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ABSTRACT

We propose an algorithm to directly synthesize in time-domain a
constant-envelope transmit waveform that achieves the optimal per-
formance in detecting an extended target in the presence of signal-
dependent interference. This approach is in contrast to the traditional
indirect methods that synthesize the transmit signal following the
computation of the optimal energy spectral density. Additionally, we
aim to maintain a good autocorrelation property of the designed sig-
nal. Therefore, our waveform design technique solves a bi-objective
optimization problem in order to simultaneously improve the detec-
tion and autocorrelation performances, which are in general conflict-
ing in nature. We demonstrate this compromising characteristics of
the detection and autocorrelation performances with numerical ex-
amples. Furthermore, in the absence of the autocorrelation criterion,
our designed signal is shown to achieve a near-optimum detection
performance.

Index Terms— Constant-envelope waveform, time-domain
synthesis, optimal detection, energy spectral density, autocorrela-
tion function

1. INTRODUCTION

The problem of waveform design is becoming increasingly rele-
vant and challenging to the modern state-of-the-art radar systems.
For many years, the conventional radars have transmitted a fixed
waveform on every pulse [1]; however, with the recent technolog-
ical advancements in the fields of flexible waveform generators and
high-speed signal processing hardware, it is now possible to gen-
erate and transmit sophisticated radar waveforms that are optimally
adapted to the sensing environments on a periodic basis [2]-[6]. Such
adaptation can lead to a significant performance gain over the clas-
sical (non-adaptive) radar waveforms.

Most of the salient research work on waveform design have
addressed the problem of target detection and classification [7]-
[11]. They can primarily be distinguished in terms of the employed
optimality-criterion, e.g., signal-to-noise ratio (SNR), mutual in-
formation (MI), detection probability, as well as by the assumed
modeling-conventions of the target and interference scenario, e.g.,
point or extended targets, deterministic or stochastic target-response,
and signal-dependent or signal-independent interference. The com-
monality among them is in the design results which are provided in
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terms of the optimal energy-spectral-density (ESD) of the transmit
signal. The actual time-domain synthesis of the transmit signal
is carried out as a subsequent step of the optimal-ESD evalua-
tion [12], [13].

In this work, we propose an algorithm to directly synthesize a
constant-envelope transmit waveform in order to attain the optimal
detection performance bypassing the requirement of the optimal-
ESD computation. In addition, we emphasize that the designed
waveform must have a very good autocorrelation property. There-
fore, we formulate a bi-objective optimization problem that simul-
taneously optimizes the detection and autocorrelation performances.
Our numerical results demonstrate that in the absence of the auto-
correlation criterion the designed signal achieves a near-optimum
detection performance. We also point out the conflicting nature of
the optimal-detection and autocorrelation performances and show
how difficult it is to achieve the optimal detection performance while
maintaining a good autocorrelation property.

The rest of the paper is organized as follows. In Section 2, we
briefly review the optimal radar detector and present the optimal-
ESD expression. Then, in Section 3, we develop an algorithm to
directly synthesize the transmit waveform. Numerical examples and
conclusions are presented in Sections 4 and 5, respectively.

2. REVIEW OF OPTIMAL DETECTOR

In this section, we briefly discuss the modeling and performance
characteristics of an optimal detector for an extended target in the
presence of signal-dependent interference [8], [11]. Fig. 1 depicts a
simple, schematic representation of a generic radar system. We de-
note the complex envelope of the transmitted signal by s(t), which
is nonzero only over 0 ≤ t < T and has the total transmitted en-
ergy Es =

∫ T

0
|s(t)|2dt. The target and clutter scattering are mod-

eled with two linear and time-invariant impulse responses hT(t) and
hc(t), respectively. In addition, e(t) represents the measurement er-
ror that in general includes the receiver thermal noise and any passive
interferences (jamming).

We further assume that the clutter and noise processes are com-
plex, wide-sense stationary (WSS), zero-mean Gaussian random
processes with known power spectral densities (PSDs) Pc(f) and
Pe(f), respectively. We model the target response as the Swerling-I
type hT(t) = xTgT(t) [14], where xT is assumed to be a complex,
zero-mean Gaussian random variable with variance σ2

x, and gT(t) is
a known deterministic function that depends on the target orientation
angle and radar aspect angle.

Next, we transform the problem into the frequency domain us-
ing the Fourier transform. Denoting Y (fn) as the frequency sam-
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Fig. 1. A schematic block-diagram of a generic radar model.

ple of y(t) at the nth frequency-bin with fn ∈ [−B/2, B/2] and
frequency-spacing ∆f ≡ fn − fn−1 = B/N , we can write the
detection problem as

H0 : Y = Y c +E

H1 : Y = xTY T + Y c +E
, (1)

where Y = [Y (f(−N/2)), . . . , Y (f(N/2−1))]
T and similarly Y T ,

Y c, and E include all the frequency samples of (gT(t) ∗ s(t)),
(hc(t) ∗ s(t)), and e(t) respectively. The statistical properties of
the target, clutter, and noise processes mentioned earlier enable us
to have Y |H0 ∼ CN (0,R0) and Y |H1 ∼ CN (0,R1), where
R0 asymptotically becomes a diagonal matrix for large BT with
[R0](n,n) = Pc(fn)|S(fn)|

2 + Pe(fn), and R1 can be expressed
as R1 = R0 + σ2

xY TY
H
T

.
Under this circumstance, following the similar formulations as

in [8], [14], we find that the probabilities of detection and false-alarm

are related as PD = P
[1/(1+d2)]
FA , where

d2 =

N/2−1
∑

n=−N/2

σ2
x|GT (fn)|

2|S(fn)|
2

Pc(fn)|S(fn)|2 + Pe(fn)
∆f. (2)

Therefore, for a given PFA, PD can be made larger by increasing d2,
and thus an optimal waveform can be evaluated in terms of its ESD,
Es(f) = |S(f)|2, by maximizing d2 as [11]

Es,opt(fn) = max

(

σx|GT (fn)|
√

Pe(fn)/λ− Pe(fn)

Pc(fn)
, 0

)

, (3)

where λ is computed to satisfy a pre-defined total-energy ε, i.e.,
Es =

∑N/2−1
n=−N/2 Es,opt(fn)∆f = ε.

3. TRANSMIT WAVEFORM DESIGN

In this section, we describe an algorithm to directly synthesize the
transmit waveform s(t) in order to achieve the optimal detection-
performance expressed in terms of d2 in (2). We consider M
constant-amplitude temporal samples of s(t) over 0 ≤ t < T as
{s(m) ≡ s(mts),m = 0, 1, . . . ,M − 1} with |s(m)| = As ∀m.
Here, ts = T/M denotes the sampling interval and As =

√

ε/T
is the amplitude of the complex envelope. Then, the frequency re-
sponse at the nth frequency-bin can be expressed as S(fn) = w

H
n s,

where w
H
n =

√

ts
B

[

e−j(2π/N)(n.0), . . . , e−j(2π/N)(n.(M−1))
]

is

an 1×M vector representing a scaled version of the nth row of the
discrete Fourier transform matrix, and s = [s(0), . . . , s(M − 1)]T

is an M × 1 vector of the temporal samples. Substituting S(fn) =
w

H
n s into (2), we get the optimal detection performance as

d(s)2 =

N/2−1
∑

n=−N/2

s
H
[

σ2
x|GT (fn)|

2
wnw

H
n

]

s

sH [Pc(fn)wnw
H
n ] s+ Pe(fn)

∆f. (4)

Subsequently, we can obtain the optimal transmit signal by maxi-
mizing d2 with respect to s as

s
(1) = arg max

s∈CM

|s(m)|=As

d(s)2 subject to Es(s) = ε, (5)

where Es(s) =
∑N/2−1

n=−N/2[s
H
wnw

H
n s∆f ] = tss

H
s.

Although the solution of (5) provides a constant-envelope wave-
form which is crucial in radar systems having the class C ampli-
fiers, we do not have any control over the autocorrelation function
(ACF) of the designed waveform. However, in a matched-filter
radar receiver it is generally required to have a transmit signal with
very good ACF properties, such as a narrow mainlobe and low
sidelobes [15]. In the frequency domain, the ideal ACF criterion
transforms into a flat ESD requirement over the entire bandwidth.
We can satisfy this requirement by designing a transmit waveform
whose ESD approximates a flat response in the mean square sense,
i.e.,

s
(2) = arg min

s∈CM

|s(m)|=As

S∆(s)2 subject to Es(s) = ε, (6)

where S∆(s)2 = (1/N)
∑N/2−1

n=−N/2

∣

∣s
H
wnw

H
n s− ε/B

∣

∣

2
∆f .

Noticing that the individual solutions of (5) and (6), we find that
s
(1) and s

(2) are very much conflicting in nature; because, the ESD
of s(1) would be similar to the optimal-ESD of (3) which is far from
being a flat ESD corresponding to s

(2). Therefore, in this work,
we propose to design a transmit waveform that simultaneously op-
timizes the detection and autocorrelation performances. We solve
the bi-objective optimization problem according to the scalarization
technique [16, Ch. 4.7] as

sdirect(γ) = arg min
s∈CM

|s(m)|=As

−γd(s)2 + (1− γ)S∆(s)2

subject to Es(s) = ε, (7)

where γ is a positive fraction representing the relative weight of the
first objective (detection performance) with respect to the second
(autocorrelation performance).

We compare the performance of the direct synthesis approach of
(7) with those of a couple of existing indirect approaches that syn-
thesize constant-envelope signals. The first steps of both of these
indirect approaches are to apply (3) for computing the optimal ESD.
Then, in the second step, [12] synthesizes the transmit signal by
minimizing the least-square error between the designed frequency
response and the square-root of the optimal-ESD, i.e.,

scomp =

arg min
s∈CM

|s(m)|=As

N/2−1
∑

n=−N/2

∣

∣

∣

√

Es,opt(fn)e
j∠S(fn) − S(fn)

∣

∣

∣

2

∆f

subject to Es(s) = ε. (8)

Alternatively, in the second step, [13] proposes an optimality crite-
rion as the minimization of the least-square error between the ESD
of the design transmit waveform and the optimal ESD as

sms = arg min
s∈CM

|s(m)|=As

N/2−1
∑

n=−N/2

[

|S(fn)|
2 − Es,opt(fn)

]2
∆f

subject to Es(s) = ε. (9)
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Fig. 2. Variations of the target, clutter, and noise powers in Scenar-
ios I and II.

4. NUMERICAL RESULTS

In this section, we present the results of several numerical examples
to demonstrate the performance of the designed waveforms. The tar-
get, clutter, and noise PSDs were simulated following the examples
of [11]. For example, we considered the target signature as a Gaus-

sian mixture: |GT (f)|
2 = g0 +

∑4
i=1 gie

−(f−fi)
2/(2σ2

T
), where

g0 = 0.001, g1 = 0.8, g2 = 0.01, g3 = 0.2, g4 = 0.02; the
frequencies were f1 = 0.5 kHz, f2 = 1.5 kHz, f3 = 2.8 kHz,
f4 = −0.5 kHz; and variance was σ2

T
= 2 × 104. The noise PSD

was assumed to be flat over the entire bandwidth of 8 kHz. We
generated two different clutter-PSDs to simulate two scenarios. In
Scenario I, we took a flat clutter-PSD P(1)

c (f) = 1, for which the
clutter return would be just a scaled version of the transmitted-signal
ESD and this constitutes the worst-case scenario. In Scenario II,
we modeled the clutter PSD to have a Gaussian shape: P

(2)
c (f) =

e−(f−fc)
2/(2σ2

c ), where fc = 0.2 kHz and σ2
c = 8 × 105, and

scaled it to ensure that the total clutter-energy remain the same, i.e.,
∑

n P(1)
c (fn) =

∑

n P(2)
c (fn). In addition, we scaled the target-

signature and noise-PSD to satisfy the pre-defined clutter-to-noise
ratio (CNR) of 10 dB and signal-to-noise ratio (SNR) of −10 dB.
Fig. 2 depicts the variations of the target, clutter, and noise powers
in Scenarios I and II, and the associated water levels λPe(f).

Fig. 3(a) shows the ESDs of the designed waveforms sdirect(γ),
scomp and sms in Scenario I, along with the optimal ESD evaluated
from (3). We noticed that the ESDs of all the three designed signals
approximately matched with the optimal ESD at the normalized fre-

Table 1. Detection performances of the designed waveforms

Waveforms Values of d2 Values of d2

in Scenario I in Scenario II
Optimal 22.63 14.93
sdirect(γ = 1) 21.92 14.20
sdirect(γ = 0.05) 11.55 7.66
scomp 21.58 14.00
sms 21.57 13.85
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Fig. 3. Energy spectral densities of the designed waveforms in (a)
Scenario I and (b) Scenario II.

quencies around 0.062, although the undulation of scomp was more
than the other two signals. On the other hand, around the normal-
ized frequency 0.35, only the ESD of scomp showed a coarse ap-
proximation of the optimal ESD. Overall, in terms of the detection
performance, as shown in Table 1, sdirect at γ = 1 was found to
outperform the other two signals. In the same figure, we also plot
the ESD of sdirect at γ = 0.05 which was far from the optimal ESD
and produced considerably deteriorating detection performance. In
Scenario II, we found similar performance characteristics in terms
of the ESDs of the designed signals and overall d2 values, as can be
noticed from Fig. 3(b) and Table 1.

We plot the normalized ACFs of all the three designed wave-
forms for both the scenarios in Fig. 4. In Scenario I, all of the
normalized ACFs corresponding to sdirect(γ = 1), scomp and sms

demonstrated very wide mainlobes; the ACF characteristics became
even worse in Scenario II. It is only the ACF of sdirect at γ = 0.05
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Fig. 4. Normalized autocorrelation functions of the designed wave-
forms in (a) Scenario I and (b) Scenario II.

that indicated a relatively improved autocorrelation performance.
The conflicting nature of the optimal-detection and autocorre-

lation performances were further evaluated by designing sdirect at
various values of γ and the resultant performance characteristics
are shown in Figs. 5(a) and 5(b) for both the scenarios. These sets
of compromised solutions concurrently optimize both the objective
functions in a Pareto-sense [17]-[19]. Along the x-axis we plot the
detection performance in terms of d2, which we want to maximize,
and along the y-axis we show the autocorrelation performance in
terms of S2

∆, which we aim to minimize. As the value of γ was
decreased from 1 to 0.05, we observed the compromise in terms
of the deterioration of the detection performance and simultaneous
improvement of the autocorrelation performance. This implies that
even when the target and interference characteristics are known we
may not achieve the optimal detection performance while simultane-
ously ensuring a good autocorrelation property. In Fig. 5, we addi-
tionally depict the performances of scomp and sms for fair compari-
son, and plot the optimal detection performance (independent of the
autocorrelation criterion) as a vertical line. The gap between the op-
timal and the achieved detection performance of the designed signals
suggests that there is still room for better signal synthesis.
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Fig. 5. Performance characteristics of the designed waveforms in
terms of the detection and autocorrelation measures in (a) Scenario I
and (b) Scenario II.

5. CONCLUSIONS

In this paper, we developed a direct-form of constant-envelope wave-
form synthesis algorithm that achieved the optimal performance in
detecting an extended target. Thus, we avoided the conventional
indirect approaches that require to evaluate the optimal energy spec-
tral density before synthesizing the transmit signal. In addition, to
maintain a good autocorrelation property of the designed signal, we
solved a bi-objective optimization problem that simultaneously opti-
mized the detection and autocorrelation performances. We presented
a comparative performance analysis of our designed signal with two
other existing constant-envelope waveform design techniques. In
the absence of the autocorrelation criterion, the proposed signal was
found to outperform the other two waveforms in the overall detec-
tion performance. Furthermore, we demonstrated that it might not
be possible to achieve the optimal detection performance and to ob-
tain a good autocorrelation function at the same time, because these
two objectives are in general conflicting in nature. In future, we in-
tend to design a signal whose detection capability will be more close
to the optimal performance.
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