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ABSTRACT

Time-reversal (TR) techniques have been shown to lead to gains
in detection and enable super-resolution focusing. These gains have
thus far mainly been demonstrated for time invariant channels, where
the channel remains constant between the initial and time-reversed
signal transmissions. Here, we are interested in determining whether
TR techniques may be beneficial in time-varying channels. We ap-
proach this problem by comparing the mutual information between
the channel and the received signals over two time slots of a radar
system which does / does not use TR. Besides evaluating this mutual
information, and showing that for this setup it is equal to directed
information which might be of interest in feedback-like channels,
we also provide a low-rank interpretation of this mutual informa-
tion for Gaussian channels. Numerical evaluations suggest that if
the channels are non-stationary yet correlated, TR may still provide
information gains over non time-reversed systems.

Index Terms— Time reversal, Radar, Mutual Information,
Stochastic time-varying channel, non-stationary channel

1. INTRODUCTION

We consider monostatic radar-based time reversal (TR) over time-
varying channels. In TR, a signal is radiated; the backscattered sig-
nal is then recorded, time-reversed, energy scaled and re-transmitted.
TR may lead to super-resolution spatio-temporal focusing using
multiple antennas, and detection gains for single and multiple anten-
nas [1–6]. Most of these contributions in TR assumed the channel to
be invariant from the initial signal transmission to the time-reversed
re-transmission. The question of whether time-reversal is beneficial
in time-varying channels remains. We make analytical progress
towards this by introducing and analyzing the information gain (or
mutual information) in TR systems as compared to conventional
systems for time-varying channels. The TR system uses the chan-
nel twice: a single antenna is assumed to first probe the channel,
and then uses the channel to transmit the time-reversed received
signal. The non-TR counterpart denoted as “conventional” system
probes the channel twice using the same signal. The channels are
assumed to be linear, stochastic, subject to additive Gaussian noise,
and time-varying.

Contributions and organization. We introduce the channel
models for both TR and conventional use in Section 2. We then in-
troduce the information gain metric, or relevant mutual information
quantity for these models in Section 3, before analytically comparing
the difference in information gains for TR and conventional channels
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in Section 4. Furthur , we demonstrate that the mutual information is
equal to the directed information, and provide a low-rank interpreta-
tion of this metric. Finally, in Section 5 we numerically evaluate the
difference in information gain of the TR and conventional channel.
Our central contributions are 1) addressing TR from an analytical
and information theoretic perspective for the first time, and 2) using
this framework to quantitatively analyze the impact of time-varying
channels on TR as compared to conventional systems.

Related work. TR has been studied for invariant channels time-
reversal in optics, ultrasound and acoustics, radar and communica-
tions, in for example [1–6] and references therein. Work on TR in
time-varying channels is limited: it was acknowledged in [4, pg.
36-37] via experimental insights that TR focusing degrades in non-
stationary time-varying environments such as the time-varying ocean
surface and its volume. In communication applications, it was ex-
perimentally shown that time varying channels affect the TR perfor-
mance, in [7, 8] –interestingly the conclusions drawn are similar to
those drawn here – that TR may still be beneficial in channels which
are correlated but not necessarily identical over time.

2. CHANNEL MODEL

We outline the two assumed transmission stages of the TR and con-
ventional channel models. Other TR protocols with more than two
stages may be devised, but for simplicity, we initially limit ourselves
to two stages.

Stage 1: The P transmitted baseband samples are s :=
[s(0), s(1), . . . , s(P − 1)]T , and the matrix S ∈ CN×M denotes
the convolution matrix comprised of the samples s. The received
signal at y1 is then given by the N complex samples

y1 = Sα1 + v1, (1)

where v1 := [v1(0), v1(1), . . . , v1(N − 1)]T , is the additive noise
and α1 = [α11, α12, . . . , α1M ]T ∈ CM is the sampled channel
impulse response.

Stage 2: The TR system transmitter then transmits the scaled,
by κ = ||s||

||ȳ1||
, time-reversed channel output y1. The convolution

matrix of the time-reversed output y1 is denoted by Ȳ1 ∈ CN×M .
In this stage, the channel impulse response is given by α2 ∈ CM
and the new noise is v2, which need not follow the same statistics
as in the first stage. In the “conventional” channel model, the same
waveform s is sent during the second stage. Thus, the second stage
outputs of the TR and conventional system, are given, respectively,
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by

yTR
2 := κȲ1α2 + v2 (TR) (2)

ynTR
2 := Sα2 + v2 (No TR). (3)

Assumptions: For analytical tractability, we assume that α :=
[α1

T ,α2
T ]T is jointly Gaussian with probability density function

(pdf), of mean and covariance, respectively,

µ := [µ1
T ,µ2

T ]T , C =

[
C1 C12

C12
H C2

]
. (4)

In (4), Ci = Cov{αi,αi}, i = 1, 2 and C12 = Cov{α1,α2},
where Cov{x,y} is the covariance (matrix) between vectors x and
y. The concatenated noise vector, v = [v1

T ,v2
T ]T is independent

of α and is assumed to be zero-mean, jointly Gaussian with corre-
sponding covariance matrix, given by,

V =

[
V1 V12

V12
H V2

]
. (5)

where Vi = Cov{vi,vi}, i = 1, 2 and V12 = Cov{v1,v2}.

3. INFORMATION GAIN / MUTUAL INFORMATION

We quantify the utility of TR channels using “information gain”, or
the mutual information between the appropriate channel input/output
quantities as a metric. In radar channels, information theoretic met-
rics such as mutual information and conditional entropy have been
used for a variety of purposes including waveform design [9, 10],
waveform scheduling [11, 12], and sensor management [13, 14]. We
are motivated to use mutual information or information gain as met-
ric for the same purpose as the aforementioned work – as a surrogate
metric, which is not linked to a specific task such as detection, to
quantify the amount of information gained via TR.

The radar system wishes to learn about the channel α from the
received signals y = [y1

T y2
(TR)T ]T (TR) or y = [y1

T y2
(nTR)T ]T

(conventional), given knowledge of the transmitted waveforms s.
Define the “information gain” about α from y := [y1

T y2
T ]T

given knowledge of the transmitted waveform s by the mutual in-
formation (MI) between α and y given s, denoted by I(α; y|s) :=

Ep(α,y,s)

{
ln( p(α,y|s)

p(α|s),p(y|s) )
}

= h(α|s) − h(α|s,y). Here h(·|·)
is defined as the conditional differential entropy, p(·|·) is the con-
ditional pdf, and E denotes the expectation operator. Recall the
following [15]:

h(α|s) : = −Ep(α,s){ln(p(α|s))} (6)
h(α|s,y) = −Ep(α,s,y){ln(p(α|s,y))}

Remark 1. Time-Reversal: A channel with feedback or not? In a
mono-static radar system which employs TR and the next wave-
form transmitted depends on the previously received data, intuitively
at least, TR appears analogous to an information theoretic channel
where the encoder employs feedback (i.e. encoders have access to
previous channel outputs and may let their subsequent channel in-
puts be functions of these outputs). For feedback channels, directed
information (DI), rather than mutual information between them, is
a more relevant metric (in terms of channel capacity) [16, 17]. In
this case, the information gained might be captured by the following

two-step causally conditioned DI:

DI(s, ȳ1) = I(α −→ y||s, ȳ1) (7)
: = I(α1; y1|s) + I(α; y2|s, ȳ1,y1) (8)

= I(α1; y1|s) + I(α; y2|s,y1) (9)

where (9) follows by substituting ȳ1 = f(y1) = Īy∗1 in (8), where Ī
is a matrix with ones on the anti-diagonal, and zeros elsewhere. One
may thus wonder why we are using MI instead of DI. Interestingly,
for our Gaussian channel model, the DI and MI are equal, which at
first is somewhat surprising (as often in channels where feedback is
employed, DI is strictly less than MI). While this may be able to be
shown by relating / extending the proof of [18][Proposition 3, part
3)] from continuous time to discrete time, and from scalar to vector
observations, we prove it directly using linear algebra.

Theorem 1. The Mutual information and directed information are
equal for the TR channel in (1),(2) under the Gaussian assumptions
in (4), (5).

Proof. It suffices to show that I(α2; y1|α1, s) = h(α2|α1, s) −
h(α2|α1,y1, s) = 0. Evaluating,

h(α2|α1, s) = h(α2|α1) = h(α1,α2)− h(α1)

= ln det(C)− ln det(C1)

= ln det(C1(C2 −C12
HC−1

1 C12))− ln det(C1)

= ln det(C2 −C12
HC−1

1 C12)

We wish to show that this is equal to the entropy below:

h(α2|α1,y1, s) = ln det(E(C2 −DE−1DH))− ln det(E)

= ln det(C2 −DE−1DH)) (10)

where, using the Schur complement form for the partitioned matrix
determinant,

D = [C12
H ,C12

HSH ], and E =

[
C1 C1SH

SC1 SC1SH + V1

]
.

The following may be readily derived:

E−1 =

[
(C1 −C1SH(SC1SH)−1SC1)−1 −SHV−1

1

−V−1
1 S V−1

1

]

(C1 −C1SH(SC1SH)−1SC1)−1 = C−1
1 + SHV−1

1 S.

Using the above equations and expanding the matrix product
DE−1DH , we can now show that DE−1DH = C12

HC−1
1 C12.

Substituting this into (10), we have the proof

That directed and mutual information are equal may be ex-
plained by the fact that we are interested in the DI between the
channel impulse response α and the output y, conditioned on the
channel inputs s, ȳ1, and the channel impulse response does NOT
employ feedback. Hence, because of the problem’s application in
learning about the channel rather than the input waveforms, what
might appear to be a feedback channel does not result in different
DI and MI.
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4. TR VERSUS CONVENTIONAL CHANNELS

We consider the difference between the information gain achieved
by the TR and the conventional channel:

Υ : = I(α1, α2; y1,y
TR
2 |s)− I(α1, α2; y1,y

nTR
2 |s)

= I(α; yTR
2 |s,y1)− I(α; ynTR

2 |s,y1), (11)

where (11) follows by the chain rule for mutual information [15],
and the fact that y1 is the same regardless of whether TR is used or
not. If Υ > 0, we may conclude that TR yields more information
about the channelα than the conventional channel, and vice-versa if
Υ < 0.

The two terms in (11) may be evaluated, under our Gaussian
assumptions, as (12) – (13). Although not explicitly shown, it is
noted that κ is a function of y1 and stays inside the expectation op-
eration. From (2), note that the pdf of yTR

2 given a y1 is normally
distributed with a mean given by κȲ1E{α2} and covariance matrix
κ2Ȳ1C2ȲH

1 +V2, which yields (12). Unfortunately a closed form
solution to (12) is not immediate, and hence Monte Carlo simula-
tions (as employed in TR settings in e.g. [2, 3]) are employed here.
To gain intuition, one may consider a simple scalar channel where
we are able to evaluate the metric analytically, as shown in [19] but
omitted due to space constraints.

4.1. A low rank / signal sub-space interpretation

Under some standard assumptions, we now analyze the less com-
monly used information gain metric from a low-rank subspace per-
spective with the goal of relating it to some more classical statistical
signal processing concepts. In (12),and due to presence of noise in
Ȳ1, we may let rank{Ȳ1C2ȲH

1 } = M . Likewise, rank of the pos-
itive definite noise covariance matrix, V2 = σ2I is N > M . Then,
κ2Ȳ1C2ȲH

1 + V2 permits an eigen decomposition

κ2Ȳ1C2ȲH
1 + σ2I = [Es(y1),En] D [Es(y1),En(y1)]H

(15)

where [Es(y1),En(y1)] ∈ C
N×N is the unitary matrix whose

whose columns are eigenvectors. In particular, κ2Ȳ1C2ȲH
1 lies

in the span of Es(y1), and likewise the columns in En(y1) ∈
C
N×(N−M) span the subspace orthogonal to Es(y1). The matrix

D is diagonal consisting of the M eigenvalues, λm(y1) + σ2,m =
1, 2, . . . ,M and the rest of the eigenvalues are σ2.

Further assume that SC2SH−(SC12SH+V12)H(SC1SH+
V1)−1(SC12SH +V12) is rank deficient, withM non-zero eigen-
values, βm,m = 1, 2, . . . ,M . We may then obtain the decomposi-
tion in (14) where, Fs and Fn have the same dimensions as Es(y1)
and En(y1), respectively. Then the matrix SC2SH − (SC12SH +
V12)H(SC1SH + V1)−1(SC12SH + V12) = span{Fs}. The
matrix D̃ is diagonal and consists of M corresponding eigenvalues
βm + σ2, and the rest of the eigenvalues equal to σ2.

Using (15) and (14), (11) can now be written as,

Υ = Ey1

{
ln

(
M∏
m=1

(λm(y1) + σ2)

)}
− ln

(
M∏
m=1

(βm + σ2)

)

=

M∑
m=1

Ey1

{
ln

(
λm(y1)

σ2
+ 1

)
)

}
−

M∑
m=1

ln

(
βm
σ2

+ 1

)
c

(16)

The eigenvectors in Es(y1), Fs are derived from the spectral de-

composition of the conditional covariance matrices (conditioned on
y1) for the TR and conventional channel, respectively. While not the
classical signal subspaces, we may define them as the conditional
“signal” subspaces. Note that these subspaces contain the contribu-
tions of the noise from the first use of the TR channel Ȳ1, as well
as the noise covariance in V1 from the first use of the conventional
channel, respectively (and hence are not necessarily strict “signal”

subspaces). Regardless, one may view
M∏
m=1

(λm(y1)/σ2 + 1) as

a measure of the “quality” of the (noise corrupted) conditional sig-
nal subspace after TR for a given y1. In the same spirit, the same

can be said about the term
M∏
m=1

(βm/σ
2 + 1), which measures the

“quality” of the (noise corrupted) conditional signal subspace for the
conventional channel. One may then interpret Υ in (16), and under
these assumptions as comparing the quality of the expected condi-
tional signal subspace after TR and the quality for the corresponding
conditional subspace for the conventional channel.

5. SIMULATIONS

We consider a channel termed ch-A with covariance matrix CA =[
I ρaI
ρaI I

]
. This implies that theM taps inαi = [αi1, αi2, . . . , αiM ]T , i =

1, 2 are uncorrelated within each stage but are correlated across
stages, depending on the values assumed by ρa. To purely an-
alyze the effects of the channel, we assume white noise, i.e.
V12 = 0,Vi = I, i = 1, 2. Two waveforms for the transmit-
ted s are analyzed, the first is a BPSK symbol waveform comprising
random ±1, the other is a radar chirp waveform. The analysis is
carried out in baseband. We let M = 10, and define the SNR as
|s|2M/σ2. The number of Monte Carlo trials were set at 10,000 to
evaluate the expectation operation.

In Fig.1, the value of Υ versus ρa are shown for the BPSK wave-
form and the chirp for ch-A at SNR=0, 10, 20dBs. In Fig. 1(a), for
SNR=10,20dB, we see that the Υ is positive for high correlation
(ρa ∈ ±(1, 0.5]), indicating superior performance of the TR when
compared to the conventional channel. For medium to low correla-
tions, and not surprisingly, the opposite is true, i.e Υ becomes nega-
tive indicating that TR is not preferable when compared to using the
channel conventionally. In particular, we see that for SNR=20dB,
and for medium and low correlation, the metric assumes low val-
ues. Similar results are seen for the chirp waveform in Fig. 1(b).
The break even points for Fig. 1(a) and Fig. 1(b), i.e. Υ = 0 are
different for the same SNR, hence a waveform dependency is also
noted. The processing for the chirp was performed in the baseband
bandwidth [2] which contains 99% of the signal energy. For the im-
plementation, spectral content outside the band was notched, and an
inverse FFT (IFFT) was employed to return to the time domain. Such
frequency domain processing is not required for the BPSK, as it is
wideband. Additional simulation results for a different covariance
matrix C are provided in [19].

It is stressed that the metric Υ evaluates the TR and conventional
channel on the “average”. In other words, for low to medium corre-
lation, we have seen instances where the difference between the MI
between the TR and the conventional channels are actually positive,
whereas on an average it is negative, i.e. Υ < 0.

6. CONCLUSIONS

We have explored time-reversal in a two stage mono-static radar sys-
tem from an information gain perspective. In particular, for time-
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I(α; yTR
2 |s,y1) = h(yTR

2 |s,y1)− h(yTR
2 |y1,α1,α2, s) = Ey1

{
ln det(κ2Ȳ1C2ȲH

1 + V2)
}
− ln det(V2) (12)

I(α; ynTR
2 |s,y1) = h(ynTR

2 |s,y1)− h(ynTR
2 |s,y1,α1,α2) (13)

= ln det
(
SC2SH + V2 − (SC12SH + V12)H(SC1SH + V1)−1(SC12SH + V12

)
− ln det(V2)

SC2SH + σ2I− (SC12SH + V12)H(SC1SH + V1)−1(SC12SH + V12) = [Fs,Fn] D̃ [Fs,Fn]H (14)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−4

−2

0

2

4

6

8

10

12

14

16

ρa

Υ

ch-A BPSK

 

 

SNR−0dB
SNR−10dB
SNR−20dB

(a)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−2

0

2

4

6

8

10
ch-A Chirp

ρa

Υ

 

 

SNR−0dB
SNR−10dB
SNR−20dB

(b)

Fig. 1: For ch-A metric Υ vs ρa for SNR={0,10,20}dBs (a) BPSK, N = 10, (b) Chirp waveform, N = 250

varying channels, we have compared the information gain for TR
and conventional, Gaussian channel models. Analytical and numeri-
cal evaluations demonstrated that TR may still be beneficial in chan-
nels which are not necessarily identical but still correlated over time.
How much TR outperforms a conventional channel (if at all) depends
on the waveform transmitted, the SNR and the degree of correlation
present in the channel.
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