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ABSTRACT

Multi-linear techniques using tensor decompositions provide
a unifying framework for the high-dimensional data analy-
sis. Sparsity in tensor decompositions clearly improves the
analysis and inference of multi-dimensional data. Other than
non-negative tensor factorizations, the literature on tensor es-
timation using sparsity is limited. In this paper, we intro-
duce sparse regularization methods for tensor decompositions
which are useful for dimensionality reduction, feature selec-
tion as well as signal recovery. One major challenge in most
of the tensor decomposition algorithms is their heavy depen-
dence on good initializations. To alleviate such a critical prob-
lem we propose a reliable method based on the ridge regres-
sion to provide good starting values taking advantage of spar-
sity. Combined with such initializations our sparse regular-
ization methods show highly improved performance over the
conventional methods in the demonstrated simulation studies.

Index Terms— tensors, CANDECOMP, PARAFAC, reg-
ularization, sparsity, LASSO

1. INTRODUCTION

Multi-dimensional data is becoming more common and per-
vasive with advances in computer storage and information
management. Tensors accommodating such data as multi-
way arrays have increased interest in big data and turned our
attention to tensor-based scientific computations from the fa-
miliar matrix decompositions such as singular value decom-
positions (SVD) and principal components analysis (PCA).
Tensor decompositions of multilinear models like CANDE-
COMP/PARAFAC (CP) [4, 9] or Tucker models [20] provide
a unifying framework for multidimensional data analysis with
simplified notations and algebras [12]. While the massive
amounts of data often lead to limitations and challenges in
analysis, sparsity in tensor decompositions clearly improves
the analysis and inference of multi-dimensional data. For ex-
ample, sparsity can be used for accurate signal recovery (e.g.
compressed sensing) [17] or to eliminate unnecessary redun-
dant features (dimensions) of many modern data sets (e.g. fi-
nancial and consumer data, DNA micro arrays, internet net-
work traffic flows, functional MRIs) allowing simple visual-
ization and exploration of the data [1].

We first address two different notions of sparsity. The first
notion of sparsity refers to the case in which the considerable
number of data elements are zero or close to zero in their rel-
ative magnitude [13]. The second notion appears in the reg-
ularization methods such as the ridge regression and LASSO
(least absolute shrinkage and selection operator) where the es-
timated regression parameters are either shrunk towards zero
or driven to zero by increasing the penalty of model com-
plexity [18]. Even though two notions of sparsity are used in
different settings, they are related to a certain degree in the
context of tensor data. The underlying sparsity of the ten-
sor data naturally implies that the factor matrices of a de-
composed tensor are sparse as well. Thus, when the tensor
data are themselves sparse or the main features and aspects
of a high-dimensional tensor data involve some sparse struc-
ture, the regularization methods successfully estimate the ten-
sor factors of CP decompositions instead of the usual least
squares estimation.

Other than non-negative tensor factorizations in [16, 15,
6], we note that the tensor decompositions using sparsity has
been considered rather recently in [10, 5, 17, 2] among oth-
ers. In this paper, we first propose regularization methods
for tensor factor decompositions with the popular CP model.
One major challenge in most of the tensor decomposition al-
gorithms is their heavy dependence on good initializations
[14]. In order to alleviate such a critical problem we pro-
pose a reliable method based on the ridge regression to pro-
vide good starting values taking advantage of sparsity. Com-
bined with such initializations our sparse regularization meth-
ods show highly improved performance compared to the con-
ventional decomposition algorithms as illustrated in the sim-
ulation studies.

Relations to prior work: We note that Lasso regularization
in non-negative CP decomposition was proposed for cluster-
ing purposes in [8]. Recently, the CP decomposition with
sparse factors using Lasso and ALS, called the Sparse CP-
ALS method, has also been addressed (but not recommended)
in [2]. Although the idea of solving the regularized criterion
(8) in the ALS algorithm coincides with ours, the details on
the implementation of the method are missing in [2]. Fur-
thermore, the results (using an essentially same simulation
setting) depicted in [2, Table I] are not in line with our sim-
ulation results, implying significant differences in the imple-
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mentation and initializations.

1.1. Notations for Tensors

A tensor A of order d usually seen as a d-way array with
d indices, represents a multi-linear operator with coordinates
Ai1..id . Tensors are denoted by boldface Euler script letters,
e.g. A, matrices by A, vectors by a and scalars by a. Then
ai will denote the ith column vector of a matrix A and a(i) its
(transposed) row vector. Let ◦ denote the outer product, i.e.
a◦b = ab

T and a◦b◦c has aibjck as its (i, j, k)th element,
⊙ denotes the Khatri-Rao product, i.e. for any matrices B ∈
R

J×R and C ∈ R
K×R, C ⊙ B is a JK × R matrix of the

form
C⊙B =

(

c1 ⊗ b1 · · · cR ⊗ bR

)

,

where ⊗ denotes the Kronecker product; in the vector case,
c⊗b = vec(bcT ). Let ‖ ·‖2 (resp. ‖ ·‖1) denote the ℓ2-norm
(resp. ℓ1-norm) defined as ‖A‖22 = Tr(AA

T ) =
∑

i

∑

j a
2
ij

(resp. ‖A‖1 =
∑

i

∑

j |aij |) for any matrix A. For simplic-
ity, we first illustrate the methods for 3-way tensors, but the
extensions to multiway tensors are trivial.

1.2. The CANDECOMP/PARAFAC (CP) Models

The CANDECOMP/PARAFAC (CP) decomposition [4, 9]
approximates a tensor X ∈ R

I×J×K by a predicted tensor
X̂ consisting of a sum of R ∈ N

+ rank-1 tensors (outer
products):

X̂ ≡ Jγ;A,B,CK ,

R
∑

r=1

γrar ◦ br ◦ cr.

Thus, we model X as

X =

R
∑

r=1

γrar ◦ br ◦ cr + E (1)

where ar ∈ R
I , br ∈ R

J and cr ∈ R
K for r = 1, . . . , R

form the unit-norm column vectors of the factor matrices A ∈
R

I×R, B ∈ R
J×R, and C ∈ R

K×R and the tensor E ∈
R

I×J×K contains the error terms. Note that the factor matri-
ces are not assumed to be orthonormal and not necessarily of
full rank. The model (1) can be expressed in a matrix form
by unfolding the tensor into a matrix along any of the three
modes. Unfolding the tensor X along the first mode yields a
I × JK-matrix denoted as X(1) so that the equivalent repre-
sentation of (1) is

X(1) = AΓ(C⊙B)T +E(1), (2)

where Γ = diag(γ) and E(1) denotes the unfolded I × JK
matrix of E. The mode-2 and mode-3 unfoldings of the tensor
X are obtained similarly:

X(2) = BΓ(C⊙A)T +E(2),

X(3) = CΓ(B⊙A)T +E(3),

where E(2) denotes the unfolded J × IK matrix of E and
E(3) denotes the unfolded K × IJ matrix of E.

Consider the case that B and C are fixed and that γr’s are
the scales of the columns of A, i.e., ar’s are no-longer unit
vectors, but γr = ‖ar‖. Then,

min
A

‖X−Jγ;A,B,CK‖2 = min
A

‖X(1)−A(C⊙B)T ‖22 (3)

of which the least squares (LS) solution is found as

Â = X(1)(C⊙B)((CT
C) ∗ (BT

B))† (4)

with † denoting the Moore-Penrose inverse. Now the esti-
mates of γr’s are simply γ̂r = ‖âr‖. Assuming that the
number of factors R is known, one of the most popular algo-
rithm to compute a CP decomposition is the alternating least
squares (ALS) method, i.e. CP-ALS algorithm. The ALS al-
gorithm successively estimates the LS solutions for each com-
ponent B and C in turn keeping others fixed until an appro-
priate convergence criterion is satisfied.

2. THE SPARSE REGULARIZATION METHODS

The underlying sparsity of a tensor X leads us to a simple
remedy of using the regularization methods instead of solving
the conventional LS-criterion as in (3). The aforementioned
strong sensitivity to the choice of initial estimates is unavoid-
able with most of the well-known algorithmic tensor factor-
ization methods including CP-ALS, HOSVD (Higher Order
SVD), HOPCA (Higer Order PCA), and HOOI (Higher Or-
der Orthogonal Iteration). To provide good initial estimates
in tensor factor estimation we first propose the CP alternating
ridge regression (ARR) method with an ℓ2-penalization. We
note that these estimates can be used not only for the good
initial guesses but also for stand-alone estimates when the un-
derlying structure of tensor data demands shrinkage with non-
zero values instead of sparsity with many zero values. With
those good starting values the CP alternating LASSO method
is desirable in the sense that the LASSO is computationally
feasible for high-dimensional data with the fast LARS (Least
Angle Regression) algorithm in practice [18, 7].

2.1. The Alternating Ridge Regression (ARR) method

With the continuing framework of the CP-ALS algorithm,
we first let Z = C ⊙ B for brevity in updating Â fixing
the others fixed. Then, the minimization in (3) simplifies to
minA ‖X(1)−AZ

T ‖22. The ridge regression [11] (also called
Tikhonov regularization in the fields of Bayesian estimation
and the inverse problems) can be formulated in our context

Â ≡ RR(X(1),Z, λ) = argmin
A

‖X(1) −AZ
T ‖22 + λ‖A‖22.

(5)
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This approach (commonly formulated in the univariate re-
sponse regression problems) extends to the multivariate re-
sponse case in a straightforward manner. The solution to the
above optimization problem is easily found to be

Â = X(1)Z(Z
T
Z+ λI)−1,

where, as in (3), the term Z
T
Z can be computed efficiently

as ZT
Z = (CT

C) ∗ (BT
B). In general, the bigger the ridge

(shrinkage) parameter λ, the greater the amount of shrinkage
of coefficients towards zero.

The appropriate choice of the penalty parameter is an
open problem in the regularization methods. We suggest two
approaches to estimate λ. The first, called the high level
shrinkage (HLS-) estimator, is defined as λ̂ = 1

R

∑R
j=1 d

2
j ,

where d1 ≥ d2 ≥ · · · ≥ dR ≥ 0 are the singular values of Z.
Note that the penalty parameter simplifies further as λ̂ = JK
due to the fact that in the ridge regression the rows of X(1) are
centered and the columns of Z are centered and standardized.

In the second approach, we estimate the penalty parameter
λ using the Bayesian information criteria (BIC) [19]. Since
we have a multivariate regression problem, we formulate the
BIC criterion as

BIC(λ) = N ln σ̂2 + df(λ) · lnN (6)

where N = JK is the number of columns in X(1), σ̂2 =
1
I ‖X(1) −AZ

T ‖22 is the average squared residuals and df(λ)
is the degrees of freedom of the model. df(λ) is defined as
df(λ) = I ·Tr{Hλ} = I ·

∑R
j=1 d

2
j(d

2
j + λ)−1 where Hλ =

Z(ZT
Z+ λI)−1

Z
T denotes the “hat matrix”. Then, the BIC

penalty parameter estimate of λ is

λ̂ = arg min
λ∈Λn

BIC(λ) (7)

where Λn is a grid of n values λn−1 < λn−2 < · · · < λ1 <
λ0. We set λ0 = 10 · d1, i.e., a value sufficient to shrink
the parameters close to a zero and λi = ǫi/(n−1)λ0 for i =
1, . . . , n−1. The smallest λ value equals λn−1 = ǫλ0 and the
larger n one chooses, the finer is the grid. In our simulations,
we use ǫ = 1.0e−4 and n = 100.

The Alternating Ridge Regression (ARR) method with
the HLS estimator of λ is explained in Table 1. When λ̂ is
calculated in steps 2-4 using (7), the ARR method becomes
BIC-ARR method.

2.2. The CP Alternating LASSO method

To obtain sparse solutions, one may utilize ℓ1-penalty as in
the celebrated LASSO [18] method. When we emphasize the
sparse nature of a tensor, we solve forA using ℓ2−ℓ1 criterion
function instead of ℓ2 criterion in (5):

Â ≡ LASSO(X(1),Z, λ)

= argmin
A

‖X(1) −AZ
T ‖22 + λ‖A‖1 (8)

Table 1. The HLS-ARR method.
1. Initialize B and C by B̂ and Ĉ using the CP-ALS estimates

or random matrices.

2. Â = X(1)Z(Z
T
Z + λ̂I)−1, where Z = Ĉ ⊙ B̂ has stan-

dardized columns and λ̂ = JK.

3. B̂ = X(2)Z(Z
T
Z + λ̂I)−1, where Z = Ĉ ⊙ Â has stan-

dardized columns and λ̂ = IK.

4. Ĉ = X(3)Z(Z
T
Z + λ̂I)−1, where Z = B̂ ⊙ Â has stan-

dardized columns and and λ̂ = IJ .

5. Repeat steps 2–4 until the relative change in fit is small.

Table 2. CP Alternating LASSO method.
1. Initialize B and C by B̂ and Ĉ using the strategy below.

2. Set X(1) and Z = Ĉ ⊙ B̂. Compute Â
T = (â(1) · · · â(I))

as â(i) = LASSO(xi,Z, λ̂), where λ̂ is chosen using BIC
method for i = 1, . . . , I .

3. Set X(2) and Z = Ĉ ⊙ Â. Compute B̂
T = (b̂(1) · · · b̂(J))

as b̂(i) = LASSO(xi,Z, λ̂), where λ̂ is chosen using BIC
method for i = 1, . . . , J .

4. Set X(3) and Z = B̂ ⊙ Â. Compute Ĉ
T = (ĉ(1) · · · ĉ(K))

as ĉ(i) = LASSO(xi,Z, λ̂), where λ̂ is chosen using BIC
method for i = 1, . . . ,K.

5. Repeat steps 2–4 until the relative change in fit is small.

The optimization problem decomposes to i = 1, . . . , I sepa-
rate LASSO estimation problems and Â

T = (â(1) · · · â(I))
in (8) can be found by solving â(i) = LASSO(xi,Z, λ) for
i = 1, . . . , I . In the above, the ith (transposed) row vector
of X(1), denoted by xi ∈ R

JK , plays the role of the ‘re-
sponse variable’ regressed by the R columns (‘explanatory
variables’) of Z = Ĉ⊙ B̂.

For the choice of the penalty parameter λ, we utilize the
BIC criterion (6), where N is now the number of elements in
xi, σ̂2 = 1

N ‖xi − Zâ
λ
(i)‖

2
2 and df(λ) is the number of non-

zero estimated parameters in the obtained LASSO estimate
â
λ
(i). Then, the penalty parameter estimate is chosen as in

(7) with the same grid, but here λ0 is the penalty parameter
that shrinks sufficiently all the parameters to zero. We set
ǫ = 1.0e−4 but choose n = 30 instead of n = 100 as in BIC-
ARR (i.e., less dense grid) to reduce the computation time for
practical purposes. Note that a larger n would increase the
optimality of the LASSO fit and this value can be increased
when the long computational time is not an issue.

The proposed method is explained in Table 2. The initial-
ization strategy is as follows. If BIC-ARR estimator X̂2 pro-
vided a better fit than the CP-ALS estimator X̂1 in the sense
that ‖X−X̂1‖2 > ‖X−X̂2‖2+0.01‖X‖2, then initialize the
algorithm using the BIC-ARR estimator X̂2, otherwise initial-
ize using the HLS-ARR estimator X̂2. Thus, if the BIC-ARR
estimator does not provide sufficiently better initialization es-
timates than the ALS estimates it is safer to use the estimates
with the guaranteed sparse-nature.
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3. SIMULATIONS

We consider model (1), when the factor matrices and hence
the true noise-free three-way tensor X0 is sparse. The ob-
served three-way tensor is generated as X = X0 + E, where
X0 =

∑R
r=1 λrar ◦ br ◦ cr is the Kruskal tensor, E is the

noise tensor and the rank R is assumed to be known. The
accuracy of the obtained estimate X̂ is calculated by the rel-
ative mean squared error RMSE(X̂) = ‖X0 − X̂‖22/‖X0‖

2
2.

When a factor matrix, say A ∈ R
I×R, is sparse, then it is

of interest to measure the classification performance of the
method, or in other words, the performance for correctly es-
timating zero/non-zero features. Such information is conve-
niently summarized via the 2× 2 confusion matrix of the fol-
lowing form:

Estimate of A
0 6= 0 sum

True 0 n1C n1M n1

A 6= 0 n2M n2C n2

sum n′
1 n′

2 I ·R

where n1C (resp. n2C ) is the number of entries in the esti-
mate Â correctly “classified” as being zero (resp. non-zero)
and n1M (resp. n2M ) is the number of entries in Â “mis-
classified” as being non-zero (resp. zero). Then, I · R =
n1 + n2 = n′

1 + n′
2 is the total number of entries in matrix

A ∈ R
I×R. To obtain a single measure of the accuracy, we

can summarize the results further by the classification error
rate, defined as CER(Â) = (n1M + n2M )/(I · R) or recov-
ery rate RER(Â) = 1− CER(Â).

In our first simulation setting I = 1000, J = 20 and
K = 20, the noise tensor E ∈ R

1000×20×20 has independent
elements from N(0, 1) distributions, the Kruskal tensor X0

has rank R = 3, and only the factor matrix A ∈ R
1000×3 is

sparse. The factor matrix A is generated in a way that each el-
ement Aij is either equal to a zero or an independent random
deviate from N(0, 1) with equal probability 1/2. The entries
of non-sparse factor matrices B ∈ R

20×3 and C ∈ R
20×3 are

independent deviates from N(0, 1) distribution. The columns
of A, B and C are then normalized to have unit length and
the values of the loadings are γ1 = 1000, γ2 = 500 and
γ3 = 500. We simulated M = 50 tensors according to the
above setup.

The sparsity factor (SF), defined as the average number
(based on M Monte Carlo trials) of zero elements in X0 is
SF = 12.6% and the signal to noise ratio (SNR), defined as
the average value of ‖X0‖

2/‖Ẽ‖2 is SNR = 4.2894. The es-
timated noise tensor Ẽ keeps the same sparse structure of X0.
The average RMSE of the CP-ALS and the CP alternating
LASSO were, 0.0652 (0.0814) and 0.0088 (0.0218) respec-
tively, with the standard deviations of each in the parenthesis.
The average confusion matrices for estimating the sparse fac-
tor matrix A ∈ R

1000×3 were
(

0 1507
0 1493

)

and
(

1290 216
83 1411

)
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Fig. 1. Boxplots of the 10 log10(RMSE) values for the sim-
ulation setting 1 (left plot) and setting 2 (right plot) for the
ALS and the Sparse ALS (CP alternating LASSO) methods

in the case of CP-ALS method and the CP Alternating
LASSO method, respectively. As expected the conven-
tional CP-ALS method does not set any of the elements
of Â to zero. On the contrary, the proposed CP Alternating
LASSO method has the rate of 1290/1507 ≈ 85.6% of cor-
rectly selecting zero features and its overall recovery rate is
RER(Â) = (1290 + 141)/3000 = 90.3%. Naturally, both
CER and RER are about 50% and 50% for the ALS method
indicating that the method serves as a random guess classi-
fier. The first two boxplots in Figure 1 with 10 log10(RMSE)
of the obtained values for the CP-ALS and CP Alternating
LASSO method display the considerably improved accuracy
of our proposed sparse method.

In the second simulation setting, two factor matrices B

and C are sparse and generated as the above, i.e. each ele-
ment is either equal to a zero or or an independent random
deviate from N(0, 1) with equal probability 1/2. Other pa-
rameters remain the same as before and M = 50 tensors
were simulated according to the above model. The sparsity
factor is much higher in this simulation setting, reaching the
level of SF = 68% on average. The average RMSE of the
ALS and the sparse-ALS method were, 0.0486 (0.0753) and
0.0089 (0.0274) respectively, where the values in the paren-
theses are the standard deviations. The average confusion ma-
trices for estimating the sparse factor matrices A ∈ R

1000×3,
B ∈ R

20×3 and C ∈ R
2×3 were

(

1306 197
88 1409

)

,

(

28 2
1 29

)

and
(

28 2
1 29

)

for the CP alternating LASSO method. Thus, RER values
were 91%, 95% and 95% for correctly estimating zero/non-
zero features of the factor matrices A, B and C, respectively.
As in the first simulation the conventional CP-ALS method
performed as a random guess classifier. The third and fourth
boxplots of 10 log10(RMSE) illustrate that the sparse-ALS
method offers highly more accurate estimates by exploiting
the knowledge of sparsity.
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