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ABSTRACT

The effective representation of the structures in the multiview images
is an important problem that arises in visual sensor networks. This
paper presents a novel recovery scheme from compressive samples
which exploit local and non-local correlated structures in dense mul-
tiview images. The recovery model casts into convex minimization
framework which penalizes the sparse and low-rank constraints on
the data. The sparsity constraint models the correlations among pix-
els in a single image whereas the global correlations across images
are modelled with the low-rank prior. Simulation results demonstrate
that our approach achieves better reconstruct quality in comparison
with the state-of-the-art reconstruction schemes.

Index Terms— Low-rank matrix recovery, Compressive sens-
ing, Sparsity, Compressive acquisition, Multiview imaging.

1. INTRODUCTION

Multiview imaging has received advent attention because of its
wide range of applications such as virtual view synthesis, high-
performance imaging and video processing [1]. Multiview systems
are a network of visual sensors working together to execute a specific
task, known as Visual Sensor Networks (VSN). The visual sensors
are self-powered with limited on-board processing capability. The
limitation of power is the main constraint in VSN which enforces
a trade-off between the acquisition accuracy, computational power
and battery life duration. These systems acquire highly overlapped
images of the scene from different view points, thus the underlying
data of such networks exhibit a specific structure. There are many
issues that need to be addressed in designing a multiview imaging
system. Specially, the large amount of data produced by multiview
systems and more important is a low power mechanism to acquire a
scene information.
In this paper, we focus on a VSN whose camera sensors acquire
different images of the scene from a specific view points. Due to the
spatial proximity of cameras, the obtained images have high corre-
lations. However, cameras cannot collaborate in image acquisition.
Therefore, compression should be performed locally at each camera
and reconstruction is executed jointly to consider dependencies in
the acquired data. In addition, the heart of compressive recovery
problems lie on how to exploit the correlations of different parts
of the underlying signal. Some compression schemes only con-
sider local relationships on the assumption that the entries mainly
have local dependencies. However, in problems such as multiview
imaging entries also depend on far away values. Accordingly, for
such problems it is necessary to employ tools to capture the global
information of the data.
Recently, compressive sensing has been proposed as an interest-
ing alternative to transform coding for power constrained systems

[2, 3, 4, 5]. We introduce an independent compressive acquisition
method similar to compressive sensing for multiview systems in
which images are independently sampled by small number of ran-
dom measurements. In order to address the reconstruction problems
on how to efficiently consider the specific structures in multiview
imaging, we propose a general framework in which many multiview
imaging problems are addressed. Precisely, in addition to a non-
collaborative measurement scheme, we introduce a joint recovery
model for images from the ensemble of random measurements. We
combine the sparsity of each image with a low-rank prior on the
ensemble of the images to model the inter- and intra-correlations in
a dense camera network. The sparsity prior intends to exploit the
local dependencies in each image while the low-rank exploits the
global, non-local structure of the multiview data.

2. BACKGROUND

2.1. Compressive Sampling

The compressive sampling methodology employs a linear measure-
ment scheme to compress a signal with sampling rate much lower
than Nyquist rate [2, 3]. The linear measurements are collected by
projecting the signal onto a set of random vectors. Let x ∈ Rn
represent the acquisition signal, the measurement vector y ∈ Rp is
calculated by

y = A(x) + z, (1)

where A : Rn → Rp is the sampling operator and z ∈ Rp is the
measurement noise. The compressive sampling theory states that if
the acquisition signal has a sparse representation in an orthogonal
basis Φ ∈ Rn×n, i.e. x = Φα, α ∈ Rn, then the signal x can be
robustly recovered from few measurements. The recovery problem
solves the following convex optimization problem

argmin
x∈Rn

‖ΦTx‖1 subject to ‖y −A(x)‖2 ≤ ε, (2)

where ε is a bound on the measurement noise. Recall that the lq
norm of a vector ζ ∈ Rn is defined as ‖ζ‖q =

(∑n
i=1 |ζi|

q
)1/q .

The compressive sampling scheme states that the linear map can be
defined as a matrix generated at random from certain distributions
(e.g. i.i.d. subgaussian distributions).

2.2. Low-rank Matrix Recovery

Affine rank minimization is a technique to reconstruct a low-rank
matrix from linear samples using a linear map A : Rm×n → Rp
[6, 7]. Let X ∈ Rm×n represent the low-rank matrix, the measure-
ment vector y ∈ Rp is acquired by y = A(X) + z. If the number
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of measurements is sufficient, we can find the exact low-rank matrix
from the measurements. The key to recover the low-rank matrix is
hidden in the behavior of the linear map. The recovery problem re-
quires the linear map to be drawn at random from distributions such
as i.i.d. subgaussian distributions. The low-rank matrix is recovered
from the linear measurements using a convex optimization problem
defined as

argmin
X∈Rm×n

‖X‖∗ subject to ‖y −A(X)‖2 ≤ ε. (3)

In (3), the function ‖·‖∗ is the trace norm of a matrix, which equals
to the sum of its singular values, and the rank of a matrix is equal to
the number of non-zero singular values. It is verified that the trace
norm is the tightest convex approximation of the matrix rank [8];
therefore, we can safely replace the matrix rank by the trace norm.

3. MULTIVIEW MEASUREMENT MODEL

Let X ∈ Rm×n represents the multiview image matrix, where m is
the number of images and n represents the image resolution. The
cameras image are vectorized and stored in the columns of X. The
multiview cameras do not collaborate during the signal acquisition,
thus the signal acquisition is independent among cameras. The cam-
eras collect p � mn linear measurements from the scene in the
measurement vector y ∈ Rp and p = mp̂, where p̂ denotes the num-
ber of measurements collected per camera.
We can write the linear measurement operator in matrix form as
A(X) = AXvec, where A ∈ Rp×(mn) and Xvec ∈ Rmn is the vec-
torized form of X. Then the sensing model is defined through the
equivalent expression y = AXvec + z. As described the measure-
ment matrix should be generated from a distribution such as Gaus-
sian distribution. However, the large amount of data and practical
limitations of the Gaussian random matrices highlights the impor-
tance of a computationally tractable measurement system. To tackle
the limitations of the measurement system, several camera architec-
tures have been proposed to acquire compressive measurements. As
an example, the random convolution measurement model [9] con-
volves the light field of the scene with a random pattern and few ran-
dom samples are acquired from the modulated light field. The ran-
dom convolution can be extended to VSN signal acquisition, there-
fore each visual sensor should have the same acquisition scheme
with a different random pattern. Subsequently, the measurement ma-
trix A has a block-diagonal structure as

A =


A1 0 . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . Am

 , (4)

where Ai ∈ Rp̂×n is the random measurement matrix based on
the random convolution scheme applied on the camera i. We can
use the same random pattern for all cameras (A1 = . . . = Am),
which leads to a faster reconstruction. However, using different ran-
dom patterns for cameras improve the efficiency of capturing more
diverse information across cameras.

4. JOINT LOW-RANK AND SPARSE RECOVERY

We propose a specific scheme to recover dense multiview images
from compressive samples. The multiview data is composed of im-
ages acquired from different view points of a common scene. There-

fore, the ensemble of images are the samples of the light fields be-
longing to the underlying scene, which results in non-local correla-
tions across images. The heart of the recovery scheme is to incor-
porate both local and non-local similarities of multiview data in the
reconstruction algorithm. In order to consider both types of corre-
lations, the method employs both sparse and low-rank prior on the
image matrix. The sparse prior leads to exploit the local dependen-
cies of the image matrix, i.e. the correlation inside a camera image.
Moreover, the low-rank constraint on the whole set of images takes
into account the non-local dependencies across the images. There-
fore, the Joint Low-rank and Sparse Recovery (JLSR) model consid-
ers both inter- and intra-dependencies of the image matrix.
The sparsity domain of the image matrix X can be a specially de-
signed dictionary [10, 11] or a basis. Since the images share similar
contents, the multiview basis Γ ∈ Rmn×mn, where Xvec = ΓΘ
and Θ ∈ Rmn, has a block-diagonal structure, i.e. the same basis is
used for each camera Φ ∈ Rn×n. The sparsity domain of the image
matrix is calculated by Γ = I⊗Φ, where I ∈ Rm×m is the identity
matrix and ⊗ is the matrix Kronecker product.
Though the multiview images are highly correlated, because of cam-
eras displacement a general multiview image matrix might not have
a low-rank structure. Therefore, we need to use a linear operator
P : Rm×n → Rr×s that maps the image matrix into a low-rank
matrix. The joint low-rank and sparse recovery scheme is defined as

argmin
X∈Rm×n

‖P(X)‖∗ + λ‖ΓTXvec‖1 subject to ‖y −AXvec‖2 ≤ ε,

(5)

where λ is the regularization factor. Penalizing the prior constraints
with a proper coefficient helps to reconstruct a solution which simul-
taneously satisfies both constraints with a proper factor.

4.1. Recovery Algorithm

We propose a convex optimization algorithm based on Parallel Prox-
imal Algorithm (PPXA) [12] to solve the joint low-rank and sparse
recovery model (5). PPXA is an iterative algorithm that looks for
the minimizer of a sum of convex functions. The algorithm at each
iteration computes the proximity operators of all functions and aver-
ages their results until convergence to the solution. Recall that the
proximity operator of a convex function f and any ν ∈ (0,+∞) is
defined as

proxνf (X) = argmin
Y∈Rm×n

f(Y) +
1

2ν
‖X−Y‖2F , (6)

where ‖·‖F is the matrix Frobenius norm. The soft thresholding op-
erator is defined as soft-thresh(β, ν) = sign(β) max(|β| − ν, 0).
In the joint low-rank and sparse problem (5), we define f1(X) =
‖ΓTXvec‖1, f2(X) = ‖P(X)‖∗, and f3(x) = iB2(X) where
B2 = {X ∈ Rm×n | ‖y−AXvec‖2 ≤ ε} and the indicator function
of the set B2 is defined as

iB2(X) =

{
0, if X ∈ B2;

+∞, otherwise.
(7)

As Γ is a tight frame (i.e. ΓTΓ = τI), the proximity map of
f1(X) = ‖ΓTXvec‖1 is the soft thresholding operator on the com-
ponents of ΓTXvec composed by Γ

proxνf1(X) = Γ(soft-thresh(ΓTXvec, ν)). (8)
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Algorithm 1: Joint Low-rank and Sparse Recovery Algorithm
input: γ > 0, A, Γ, y, λ.
Initializations:
Υ1 ∈ Rm×n, Υ2 ∈ Rm×n, Υ3 ∈ Rm×n,X ∈ Rm×n;
while not converged do

P1 = P∗
(
shrink(P(Υ1), γ)

)
;

P2 = Γ
(
soft-thresh(ΓTΥ2, λγ)

)
;

P3 = proxiB2 (Υ3);
P = (P1 + P2 + P3)/3;
for i = 1, . . . , 3 do

Υi = Υi + 2P−X−Pi;
X = P.

The proximity operator of the trace norm function is the shrink-
age operator proxν‖·‖∗(Ξ) = shrink(Ξ, ν). This operator per-
forms soft thresholding on the singular values of the matrix.
Ξ = UΣVT is the singular value decomposition of matrix
Ξ with Σ = diag(σ1, . . . , σd) is the diagonal matrix contain-
ing the singular values of Ξ and d = min(m,n). We define
Σ̂ = diag(σ1 − ν, . . . , σd − ν) as the shrunk diagonal matrix of
singular values, then shrink(X, ν) = UΣ̂VT . The proximity op-
erator of f2(X) for a general operator P can be calculated using a
convex iterative algorithm explained in [13]. If P is a tight operator,
i.e. P ◦ P∗ = I and P∗ is the adjoint operator of P , the proximity
operator for f2 is computed by

proxνf2(X) = P∗
(
shrink(P(X), ν). (9)

The proximity operator of f3(X) for a general measurement matrix
A is an iterative method which can be calculated using the method
explained in [13].
Having defined all proximity operators, we summarize the joint low-
rank and sparse recovery in algorithm 1 when the low-rank operator
P is a tight frame. The parameter γ controls the speed of conver-
gence and does not have a huge influence on the final result.

5. EXPERIMENTAL RESULTS

We evaluate the performance of our multiview approach on two dif-
ferent datasets. Image resolution of both datasets is cropped to n =
256 × 256 to speed up the algorithm. The first dataset (Flower and
Bowl) consists of m = 40 images and the second dataset (Park) is
composed of m = 72 images. The cameras are approximately posi-
tioned along a line with a small distance so that the captured images
are highly overlapped. Fig. 1 shows the scene of both multiview
datasets.
The measurement scheme applies an independent random convolu-
tion measurement matrix [9] to each image to acquire p linear mea-
surements as explained in section 3. The measurements are contam-
inated by additive Gaussian noise whose SNR is defined for each
sampling ratio.
The sparsity domain for the image matrix is composed of the wavelet
transform on each multiview image. For the compressive sensing
scheme the image matrix is reconstructed as a whole using the mul-
tiview sparsity basis Γ. The linear operator P plays a key role in
the proposed recovery method. For a general multiview dataset, we
need to estimate the cameras configuration in order to define the
operator P . However, in datasets consisting of highly overlapped
images a proper matrix reshaping can transform the image matrix

(a) Flower and Bowl

(b) Park

Fig. 1: Original Scene.

to a low-rank matrix, though an operator based on cameras config-
uration results in a more structured matrix which can improve the
reconstruction. In order to better model a low-rank matrix, the low-
rank operator should reshape the image matrix into a matrix which is
spread along both dimensions. Therefore, the linear operator P re-
shapes the image matrix to a matrix of size r×s = (8n/2)×(5n/2)
for the first and r × s = (8n/2)× (9n/2) for the second dataset.
The joint low-rank and sparse recovery method (5) on multiview
datasets is compared with the Compressive Sensing (CS) (2) and
Low-Rank matrix Recovery (LRR) (3) schemes. The joint low-rank
and sparse regularization factor is empirically set to λ = 0.1.
In order to asses the impact of the linear operator P , we compare
the low-rank matrix recovery method when the image matrix is not
composed by the low-rank operator with the low-rank matrix recov-
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Fig. 2: Reconstruction quality of different recovery methods for different
sampling ratios and noiseless acquisition for the flower and bowl scene.
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(a) Original image (b) SNR = ∞ (c) SNR = 30 dB (d) SNR = 10 dB

(e) Original Image (f) SNR = ∞ (g) SNR = 30 dB (h) SNR = 10 dB

Fig. 3: Estimated multiview image for different scenes using JLSR recovery scheme for sampling ratio of 1/4 and different acquisition noise levels. (a)-(d) A
reconstructed image of the park dataset for different noise levels. (e)-(h) A recovered image o of the flower and bowl dataset for different noise levels.

ery problem when the image matrix is composed by the linear op-
erator for sampling ratio p/(mn) = 1/4 and noiseless acquisition.
The reconstruction PSNR for the first scenario is PSNR = 7.6 dB
and using the low-rank operator P the reconstruction quality is in-
creased to PSNR = 30.35 dB. Therefore, it is important to consider
a proper operator that maps the image matrix to a low-rank struc-
tured matrix.
In another experiment, we compare different multiview recovery
schemes for different sampling ratios when the acquisition is noise-
less and the qualitative results are shown in Fig. 2. It is evident that
the JLSR method outperforms the other models which reveals the
importance of considering different types of correlations. Finally,
in order to further evaluate the performance of the JLSR model, we
compare this model with other recovery methods for both datasets.
Table 1 compares the PSNR of different multiview recovery schemes
for sampling ratio of p/(mn) = 1/4 and different acquisition noise
levels. The reconstruction results reveal the better performance of
the JLSR model, i.e. combining the low-rank and sparse constraints
for the multiview scenario results in a better reconstruction quality.
Fig. 3 demonstrates a qualitative comparison for different multiview
dataset recovered by the JLSR scheme for different acquisition noise.

Flower and Bowl Park
PSNR ∞ dB 30 dB 10 dB ∞ dB 30 dB 10 dB
JLSR 36.49 35.10 26.86 36.78 36.55 31.54
CS 34.22 33.43 25.65 35.54 35.52 30.62
LRR 30.35 30.03 23.56 33.19 33.07 28.86

Table 1: Comparison of different multiview recovery methods for different
noise levels and datasets with sampling ratio p/(mn) = 1/4.

6. PREVIOUS WORKS

This work is focused on compressive multiview imaging problem
wherein an ensemble of cameras collect linear measurements from a
scene. The recovery of a single image from the linear measurements
is well studied subject in the framework of compressive sampling

by exploiting the sparsity assumption on the image. While the sep-
arate recovery of each image can be applied to multiview images,
an effective reconstruction methodology should exploit the similar
structure in the multiview data. Therefore, most compressive mul-
tiview recovery algorithms relay on sparsity to exploit correlations
in the multiview images [10, 11]. However, such algorithms do not
address the global structure of the multiview images. [14] explains
a method to exploit the global consistency by estimating the under-
lying cameras position. In our recovery model, we incorporate both
inter- and intra-correlated structures by the sparse and low-rank con-
straints. The low-rank prior penalizes the global structure and the
sparse constraint provides a method to penalize the local dependen-
cies for the multiview images. Furthermore, we can incorporate the
cameras information similar to [14] which results in a more appro-
priate selection of the low-rank linear map P and can improve the
reconstruction quality. However, including cameras information can
increases the complexity of the algorithm as such information should
be provided or estimated jointly with the underlying signal.

7. CONCLUSION

In this paper, the compressive acquisition and recovery scheme
for capturing multiview images with a visual sensor network is
addressed. It is shown that the local similarities of the multiview
data are well modelled by a sparse constraint and a low-rank prior
models the global structures in the data. Moreover, for multiview
data to represent a low-rank matrix, the images need to be specifi-
cally combined which depends on cameras configuration. For dense
multiview images the low-rank constraint composed by simple re-
shaping operator can exploit the non-local dependencies. However,
the knowledge on the configuration of visual sensors can provide a
more consistent low-rank operator which results in a better recon-
struction quality. Furthermore, we have shown experimentally that
the joint low-rank and sparse recovery model outperforms state-of-
the-art reconstruction schemes. In future research, we will consider
different cameras configuration and incorporate the cameras position
in the recovery scheme in order to adapt the low-rank operator to
different cameras configuration.
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