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ABSTRACT

We propose a method to solve the multiple measurement vec-
tor (MMV) sparse signal recovery problem in a robust manner
when data contains outlier points which do not fit the shared
sparsity structure otherwise contained in the data. This sce-
nario occurs frequently in the applications of MMV models
due to only partially known source dynamics. The algorithm
we propose is a modification of MMV-based sparse bayesian
learning (M-SBL) by incorporating the idea of least trimmed
squares (LTS), which has previously been developed for ro-
bust linear regression. Experiments show a significant per-
formance improvement over the conventional M-SBL under
different outlier ratios and amplitudes.

Index Terms— Joint Sparse Signal Recovery, Robust
Statistics, Sparse Bayesian Learning, Least Trimmed Squares

1. INTRODUCTION

Sparse signal recovery has found a large number of applica-
tions in diverse fields of engineering including but not lim-
ited to neural networks, telecommunications and biomedical
source localization [1]. Typically, the signal model is

y = Ax + e (1)

where y ∈ RM×1 is the data vector, A = [a1 . . .aN] ∈
RM×N is the known overcomplete dictionary (M < N ),
x ∈ RN×1 is the source vector which is assumed to be sparse
(number of non zeros values k < M ), and e ∈ RM×1 is the
noise vector. The goal is to recover the sparse source vector
x, given y and A. It is often sufficient to find the nonzero in-
dices of x, which is called the support set and denoted by S.
The nonzero values of x can be found by solving the under-
complete inverse problem y = ASxs, where AS is the matrix
with columns ai with i ∈ S. An extension of this problem is
provided by the MMV model, which also attracted much at-
tention. In this model, instead of a single data vector y, a data
matrix Y ∈ RM×n is assumed to be generated by the source
matrix X ∈ RN×n as,

Y = AX + E (2)

where E ∈ RM×n is the noise vector. The assumption in this
model is that the columns of X, denoted by x.i, share a com-
mon sparsity structure (joint sparse). That is, it is assumed
that nonzero values of x.i are located at the same rows (in-
dices). Incorporating this assumption results in a significant
performance improvement and even more so as the number of
measurements n increases [2, 3].

In many applications of MMV algorithms, e.g. source lo-
calization for EEG and MEG, the data matrix Y is obtained
by taking out a data window of interest from a larger set of
data [4, 5]. If one has a prior knowledge of when the sources
turn active and inactive, then the data Y can be extracted
such that the common sparsity assumption holds. However, in
most cases this knowledge does not exist and the assumption
of common sparsity pattern for 100% of the data becomes far
from ideal. In this paper, we refer to data vectors y.i as out-
liers if the associated x.i do not fit the assumed MMV model,
which is the shared sparsity assumption.

If the window size n is expanded for performance im-
provement, the possibility of the data containing outliers in-
creases which can in turn dramatically decrease the algorithm
performance. In [6], the MMV algorithms has been shown to
be useful for recovering the sparse sources in the case of time-
varying sparsity when it is applied on sliding data windows.
However, because of the nature of the problem, and unknown
locations of sparsity pattern changes, it is rather likely that
sliding windows of data contain outliers.

Due to the non-ideal cases described above, we seek
an MMV algorithm that is robust to outliers. To do so,
we modify the multiple-Sparse Bayesian Learning (M-SBL)
algorithm proposed in [3] such that the new algorithm robust-
MSBL captures the support set of the majority of data vectors
y.i ignoring the outliers. We adopt the least trimmed squares
(LTS) method used for robust linear regression in [8, 9] and
apply it to the MMV problem. A similar idea is also fol-
lowed in [10] for robust sparse linear regression and robust
PCA [11]. It should be noted that robustness to noise and
high sparsity value k is pursued in [12] for the MMV model,
however, our approach differs in the sense that we pursue
robustness to outliers that are not jointly sparse with the rest
of the data.

The outline of the paper is as follows: Section 2 sum-
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marizes the M-SBL algorithm and points out the reasons for
outlier sensitivity. Section 3 overviews least trimmed squares
(LTS) and establishes its connection to robust-MSBL. In Sec-
tion 4, we perform tests. And Section 5 gives some conclu-
sions.

2. M-SBL ALGORITHM

To solve the MMV problem formulated in (2), M-SBL models
the rows of the source matrix X as n-dimensional zero mean
gaussian random variables, each having a different covariance
matrix controlled by hyperparameters γi, i ∈ [1, N ]. In other
words,

p(xi.; γ) , N (0, γiI), (3)

p(X; γ) =

N∏
i=1

p(xi.; γ). (4)

xi. is the i-th row, x.i is the i-th column of X. Under gaussian
noise with a known variance σ2, we also have p(y.j|x.j) ,
N (Ax.j, σ

2I) with p(Y|X) =
∏n
j=1 p(y.j|x.j). In [3], M-

SBL proceeds with integrating out the unknown sources X
in order to arrive at marginal likelihood of data given the
hyper parameters γ, namely p(Y; γ), which is to be maxi-
mized. Applying −2 log() transformation we get the M-SBL
cost function to be minimized,

L(γ) , −2 log(p(Y; γ)) = −2 log

∫
p(Y|X)p(X; γ)dX

≡ log |Σ|+ 1

n

n∑
t=1

y.t
TΣ−1y.t (5)

where Σ , (AΓAT + σ2I), Γ , diag(γ). Although our
modifications could be generalized to every method, we will
minimize this cost function by using the fixed point update
approach, which has significantly faster convergence rate than
the EM update [7].

γ
(k+1)
i =

γ
(k)
i

aT
i (Σ(k))−1ai

‖YT(Σ(k))−1ai‖22
n

(6)

at the (k + 1)-th iteration and γ(0)i = 1,∀i. The first term
log |Σ| in the cost function (5) encourages sparsity of γ
whereas the second term tries to fit data as pointed out in [4].
It is also possible to learn the noise parameter σ2, however
it was noted before that the best results are achieved using a
fixed value (whether estimated by a different method or using
prior knowledge) [3]. After convergence, if the sparsity k is
known, one extracts the indices of the largest k values of γ in
order to recover the support set.

One can see that all data vectors y.t and thus x.t are
treated equally in this formulation (has the same weight 1

n
in (5)), which makes the cost function sensitive to outliers.

A large amplitude source outlier xit′ (at time t′ in i-th row)
is sufficient to boost γi since a zero mean gaussian distribu-
tion with variance γi is fit for i-th row of X. In a scenario
where all source vectors x.t shares the same sparsity pattern
this phenomenon does not create a problem in terms of re-
covering the support set because we would already desire γi
for i ∈ S to be large. However, if even one x.t′ that does
not share the common sparsity pattern exists (nonzero values
at xit′ for i /∈ S), resulting γ would contain nonzero values
at indices i /∈ S. Moreover, if xit′ for i /∈ S is large, the
associated γi would also be large and thus would be falsely
regarded as one of the support set indices.

It can also be observed that in the noiseless limit case,
as σ2 → 0, if there exists a data vector y.j such that
y.j /∈ span(AS), then any sparse γ satisfying γi = 0 for
i /∈ S, cannot be a local minimum of (5) since y.j

TΣ−1y.j →
∞. Thus, outliers of the likelihood function (5) are not only
the large amplitude data vectors but also the ones that do not
share the sparsity pattern of the majority.

3. LTS AND ROBUST-MSBL

3.1. LTS

One of the most common methods for linear regression is
least squares (LS), where the regression parameter is fit such
that the sum of squared residuals are minimized. Equiva-
lently,

min
θ

1

n

n∑
i=1

r2i (7)

where θ is the parameter to be optimized and each residual ri
is a function of θ. The weight 1

n can be omitted however we
keep it to emphasize that what is being minimized is actually
the mean of ri’s. Despite its common use, it is known that
this method is very sensitive to outliers. Since every point
has the same weight 1

n , a single large outlier can dramatically
change the solution. In [8, 9], this problem is analyzed in de-
tail and alternative robust methods are proposed, one of which
is least trimmed squares (LTS) with the below function to be
optimized.

min
θ

h∑
i=1

(r2)i:n (8)

where (r2)1:n ≤ (r2)2:n ≤ . . . ≤ (r2)n:n are the ordered
residuals, h ≥ n

2 is the parameter of the LTS estimator de-
termining the number of data points to fit the parameter θ on.
LTS therefore allows for some large values of r2i while being
able to fit better to the majority of data.

3.2. Robust-MSBL

In order to make M-SBL tolerant to outlier data points, we
apply an analogue of the LTS formulation to the conventional

3822



M-SBL. Using the same notation in 3.1, we define the data fit
residual for the i-th vector as

r2i = log |Σ|+ yT
.i Σ−1y.i (9)

which is a function of γ. It can be seen that the conventional
M-SBL formulation in (5) is equivalent to the LS estimation
when r2i is defined as above. Applying the LTS idea to M-
SBL, following cost function is obtained.

L(γ) =

h∑
t=1

(r2i )(t:n)

= h log |Σ|+
h∑
t=1

(yT
.i Σ−1y.i)(t:n)

≡ log |Σ|+ 1

h

h∑
t=1

(yT
.i Σ−1y.i)(t:n) (10)

This formulation is equivalent to finding a h-size subset of n
columns of Y that would result in the smallest sum of squared
residuals. Given a subsetH of size h, we can find γ that mini-
mizes the cost function by conventional M-SBL optimization
method given in (6). If L(γ,H) denotes the M-SBL objective
function restricted to the subset H , we have

L(γ,H) = log |Σ|+ 1

h

∑
t∈H

yT
.tΣ−1y.t (11)

γ̂H = arg min
γ

L(γ,H) (12)

and the subset of data which will result in global optimum
would be given by

H∗ = arg min
H⊆{1,2,...,n},|H|=h

L(γ̂H , H) (13)

This is yet another combinatorial problem where one needs
to consider all subsets of size h and perform M-SBL on each
of these subsets of data. However, to optimize (10), we fol-
low the iterative method proposed in [9] and also performed
in [10]. This method is composed of C-steps which itera-
tively decrease the objective function value at each step and
converge to a local minimum.

3.2.1. C-steps

We start with a random h-size subset of indices {1, 2, . . . , n}
and denote this set as H0. We perform regular M-SBL on this
subset of data Y determined by H0. With the resulting γ̂H0 ,
we compute residuals r2i for all data vectors y.t as in (9). We
find the smallest h of these residuals, assign these indices as
the new subset H1 and keep repeating the same steps until
Hk = Hk+1. As also shown in [10] this method decreases
the cost function at each step, as

L(γ̂Hk+1
, Hk+1) ≤ L(γ̂Hk

, Hk+1) ≤ L(γ̂Hk
, Hk) (14)

First inequality is valid due to (12) and second inequality is
true because of the definition of the next subset Hk+1. Of
course, it is not guaranteed to reach the global minimum with
C-steps due to the random initializations and thus it is best to
consider different subset initializations and compare the cost
function values obtained at the end. Above verifications are
adopted from the sparse LTS regression problem in [10] and
applies well to the joint sparse recovery problem. Algorithm
1 presents the pseudocode for robust-MSBL.

Input : A,Y, σ2, num initializations, h
Output: γ

for trial← 1 to num initializations do
H0 ← random h-size subset of {1, . . . , n};
k ← 0;
repeat

γ ← MSBL(A, Y (:, Hk), σ2) ;
Σ← AΓAT + σ2I;
for i← 1 to n do

r2i ← log |Σ|+ yT
.i Σ−1y.i;

end
Hk+1 ← indices of minimum h of r2i
k ← k + 1

until Hk = Hk−1;
costFunc(trial)← L(γ,Hk);
gammas(trial)← γ;

end
ind← index of minimum of costFunc;
γ ← gammas(ind)

Algorithm 1: robust-MSBL

4. EXPERIMENTS

In this section, we perform experiments to compare the per-
formances of MSBL and robust-MSBL under various param-
eters. We plot the performance with respect to the percentage
of the outliers in data, while experimenting with different val-
ues of amplitude and sparsity for outliers. At each parameter
setting, we perform 100 trials and compute the mean support
recovery ratio.

For each trial, we do the following. We create a different
random dictionary of size M = 20 and N = 60 and normal-
ize its columns. We create the source matrix X of size N =
60, n = 100 by first separating it into two as X = [X1; X2].
The first portion of X, i.e. X1, is the majority of the source
vectors which share a common sparsity pattern with spar-
sity k1 = 10, whereas the second portion of data consists
of outliers sharing a different sparsity pattern or not being
sparse at all (k2 = 10, 60). Also, note that column permuta-
tions of X or Y would not affect M-SBL nor robust-MSBL.
We randomly select rows with specified parameters k1 and
k2, and generate source activations from a Gaussian distri-
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(b) k2 = 10, σ2
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(c) k2 = 60, σ2
σ1
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(d) k2 = 60, σ2
σ1

= 5

Fig. 1. n = 100, k1 = 10. More indices (k2) of γ would be nonzero for (c) and (d) compared to at most 20 = k1 + k2 in (a)
and (b), thus lower chance of true support detection for (c) and (d). The higher the outliers’ relative amplitude σ2

σ1
, the higher γi

for i /∈ S, hence the performance of correct recovery decreases from (a) to (b) and(c) to (d). As h increases the, performance of
robust-MSBL improves since it finds h points to train γ on. However, number of outliers should be lower than n− h.

bution N (0, σ1) for X1. The outliers X2 are sampled from
N (0, σ2). We set the parameter num initializations = 1.
Better performance can be achieved using a higher value how-
ever a single initialization was sufficient to show the perfor-
mance improvement over M-SBL. We add noise to the simu-
lated data such that SNR = 10dB. We recover the support set
Ŝ by extracting the indices of the largest k1 values of γ’s re-
turned by the algorithms and compute the mean success ratio
as 1

100

∑100
trial=1 |Ŝ ∩ S|/k1. Figure 1 shows the results when

data contains outliers. Figure 2 shows the results when there
are no outliers.

5. CONCLUSION

In this work, we modified M-SBL [3] by exploiting the idea
of least trimmed squares. This modification significantly
enhances MSBL’s robustness to data which contain outliers
not sharing the common data sparsity structure. Experiments
demonstrate that this approach outperforms M-SBL in recov-
ering the correct support set.
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Fig. 2. Data with no outliers (ideal case). As expected, if
n is small, M-SBL performs better than robust-MSBL when
there are no outliers because robust-MSBL finds the best h <
n data vectors to optimize γ on, whereas M-SBL uses all n
data vectors. However, if the data window n is large enough
(n > 30 for this experiment), h points become sufficient for
robust-MSBL to be as successful as M-SBL.
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