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ABSTRACT

This paper presents a new signal model in distributed com-
pressed sensing (DCS) and a reconstruction algorithm to
reduce the number of samples required to accurately recon-
struct signals obtained via sensors. While the conventional
signal models in DCS assume that all signals include exactly
the same common component, our model exploits the atten-
uation and time delay of the common component. With this
extension, one can deal with signals originated from a source
located in the field. To reconstruct such signals, we developed
a new algorithm based on the alternative direction multiplier
method. The algorithm efficiently reconstructs computer-
generated signals using a reduced number of samples. In
addition, we demonstrate the superior reconstruction quality
with our method by using real electromyographic signals.

Index Terms— Distributed Compressed Sensing, Sensor
Network, Alternative Direction Method

1. INTRODUCTION

A multichannel sensing scheme is an important signal pro-
cessing tool in a wide range of fields. For instance, such a
scheme is necessary for direction-of-arrival (DOA) estima-
tion [1], and the detection of the abnormal propagation of
electromyographic (EMG) signals [2]. Considering flexibil-
ity and construction costs, it is useful to employ a wireless
network to make a multichannel sensing system. However,
there are several challenges to implementing a wireless mul-
tichannel sensing system, such as network lifetime, compu-
tational ability, and bandwidth constraints. An efficient way
to meet these challenges is to employ some low-complexity
compression scheme in such a system.

Compressed sensing (CS) is a method that reduces a num-
ber of samples required for reconstructing a signal that is
sparse in some basis (i.e., the number of non-zero elements is
small relative to the frame length of the signal) [3, 4]. CS pro-
vides low-complexity compression of signals at the sensors
and also achieves long network lifetime and reduces commu-
nication traffic. In addition, to deal with multichannel sys-
tems, CS has been extended to distributed compressed sens-
ing (DCS) [5, 6, 7, 8]. The DCS scheme exploits correlations

between channels and reduces the number of required sam-
ples more efficiently than single-channel CS. For these rea-
sons, DCS has been studied to devise multichannel sensing
systems [9]. One of the signal models in DCS, introduced by
Baron et al. [5], is called joint sparse model 3 (JSM-3). It as-
sumes that signals share a nonsparse common component and
each signal has a sparse innovation component independently.
JSM-3 has an advantage over other signal models because it
can deal with nonsparse, or practical signals.

In this paper, we focus on JSM-3 to deal with time series
signals originated from some source and obtained via sensors
located in the field. In such a situation, it is natural to intro-
duce attenuation and time delay into the common component
in the each signal. For example, a speaker in a DOA applica-
tion or a set of muscle-fibers in EMG measurement can be a
source of such signals. To reconstruct such signals, we devel-
oped a new algorithm based on the alternative direction multi-
plier method (ADMM) [10], which has been recently applied
in CS [11] and to the DCS problem [12], and the Fixed-point
continuation (FPC) for compressed sensing [13, 14]. To rep-
resent attenuation and time delay between each channel, we
introduce new constraints in the ADMM algorithm. We show
the advantage of the devised method by recovering computer-
generated signals and real EMG data.

Our work is related to conventional research in CS and
DCS. There have been notable studies in the CS area that
consider attenuation and time delay of signals [15, 16]; how-
ever, to the best of our knowledge, they treat known shape sig-
nals with unknown attenuation and time delay. In contrast, we
consider signals with both an unknown common component
shape and unknown attenuation and time delay. (Note that this
does not mean that the signal class in our work is broader than
in theirs.) There also notable work that consider multichannel
signals linked between sparse filtering [17]. They derived a
method that estimates both an unknown sparse filter in time
domain and nonsparse signals. However, a time-delay filter
is not sparse in the time domain when it includes sub sample
delay. In our model, one can treat such delay. In addition to
the above mentioned research, there have been several studies
on the expansion of DCS model, where it was assumed that
the sparse common components are not exactly the same but
share their support (locations of nonzero elements) [9, 18].
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The algorithms are effective in our case when the common
component is sparse or approximately sparse. We compare
the performance of our algorithm with that of one such algo-
rithm, called precognition matching pursuit [9]. From view-
point of algorithms, we should mention the work by Deng et
al. [12], who proposed a DCS reconstruction algorithm based
on ADMM. They focus on a model where all signals share
their support. In contrast, we focus on a signal model with a
common component and innovation component of each chan-
nel.

2. BACKGROUND

2.1. Distributed Compressed Sensing

In the CS literature, the signal of interest is assumed to be
sparse in some sparsifying basis Φ ∈ CN×N . That is, if we
transfer the signal, x ∈ RN , to another basis, few elements
of the transferred vector, s = Φ−1x, will be nonzero. If the
number of nonzero coefficients of s is S, then we call such
signal s a S-sparse signal in the domain Φ. We obtain trans-
mitted data y ∈ CM that is generated by a few linear projec-
tions, y = Ψx = ΨΦs = As, where Ψ ∈ CM×N represents
the sensing matrix. The compressed sensing recovery proce-
dure is performed to solve the `1-norm minimization problem
to obtain an appropriate reconstructed signal. We describe the
problem formulation in Problem 2.2.

DCS is an extension of CS and is a research area that is
concerned with highly correlated multichannel signals [5, 6,
7, 8]. The problem is well-formulated by introducing the JSM
proposed by Baron et al. [5]. In their model, a representation
of the signal of interest is divided into two parts as follows:

xi = zc + zd,i,∀i ∈ Ω (1)

where zc ∈ RN×1 and zd,i ∈ RN×1 is a common compo-
nent and an innovation of channel i, respectively. In addition,
Ω = {1, 2, · · · , Nc} is a set of channel indices, and Nc is
a number of channels of the system. In most DCS models,
both common and innovation components or only innovation
components are set sparse in the domain Φ. The latter case,
Baron called the signal model JSM-3. The goal of DCS is to
recover signals xi from transmitted data yi = Ψixi. Simi-
larly to distributed source coding [19], they show that in some
cases signals can be reconstructed completely with a reduced
number of observations compared to that in single-channel
cases.

2.2. Alternative Direction Method Multipliers and Fixed-
point Continuation

Here we describe the ADMM algorithm [10] and FPC al-
gorithm for compressed sensing [13], which we applied to
solve our problem. Let Γ(KN ) be a class of convex func-
tions. ADMM is an iterative algorithm that approximates a
solution of the following optimization problem.

Problem 2.1 (A basic ADMM Problem)

min
x,s

{f1(x) + f2(s)} , s.t. x = Φs, (2)

where x ∈ KN , s ∈ KM , Φ ∈ KM×N , and f1 ∈ Γ(KN ),
f2 ∈ Γ(KM ).

In ADMM, the above problem is translated into a function,

L = f1(x) + f2(s) + λT(x − Φs) +
α

2
‖x − Φs‖2

2 , (3)

where λ ∈ RN×1 and α are a Lagurange multiplier and a
penalty parameter respectively and the function is minimized
by the following algotithm.

Algorithm 1 ADMM

Require: Φ, set k = 0, choose s(0) and λ(0).
1: while a stop criterion is not satisfied do
2: x(k+1) = arg minx L(x, s(k), λ)
3: s(k+1) = arg mins L(x(k+1), s, λ)
4: λ(k+1) = λ(k) + α(x(k+1) − Φs(k+1))
5: k = k + 1.
6: end while

Fixed-point continuation for the `1-norm minimization
problem (Algorithm 2) is proposed by Hale et al. [13], to
solve the following problem.

Problem 2.2 (An `1-norm minimization problem)

min
s

1
2
‖y − As‖2

2 + w̄‖s‖1, (4)

where s ∈ CN , y ∈ RM (M < N), and A ∈ CM×N . w̄ is a
weight that is calculated by noise power assumption.

Algorithm 2 Fixed-Point Continuation algorithm for CS
Require: A,y,α,w̄, stol, gtol, set k = 0,w = ‖A∗y‖∞,

choose s(0).
1: while w ≤ w̄ do
2: while ‖s−sp‖2

‖sp‖2
> stol

√
w
w̄ or ‖g(s)‖∞−w > gtol do

3: sp = s
4: s = Sw

α

(
s − 1

αg(s)
)

5: end while
6: w = max{w/η, w̄}
7: end while

Definitions of the above functions are as follows:

Sw
α
(s) = sgn(s) ¯ max

{
|s| − w

α
,0

}
, (5)

and

g(s) = A∗(As − y), (6)
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where ¯ denotes the element-wise product. In addition, stol
and gtol are feasibility tolerances.

We can translate Problem 2.2 into the ADMM (Problem
2.1) by substituting f1(x) = 1

2‖y−Ax‖2
2 and f2(s) = w̄‖s‖1

and by adding an update step of weight w. Hence, we can
solve the `1 minimization problem by ADMM (Algorithm 1).

3. PROPOSED MODEL AND ALGORITHM

3.1. JSM-3 with Amplitude and Phase Differences

As we mentioned in the introduction, we would like to deal
with signals originated from a source and obtained via sen-
sors located in the field. Hence, we propose a signal model
expressed in the time domain as

xi = ai,cΛθi,czc + zd,i∀ ∈ Ω, (7)

where Λθ ∈ RN×N is a rotation matrix defined as

Λθ = [IDFT]diag[1 e
2π
N j e

4π
N j . . . e

2π(N−1)
N j]θ[DFT], (8)

and ai,c, θi,c ∈ R are the amplitude and phase coefficients of
the i th channel, respectively. In addition, [DFT] and [IDFT]
are a discrete fourier transform (DFT) matrix and an inverse
DFT matrix, respectively. The common component zc corre-
sponds to the time series behavior of the source. Note that, if
ai,c equals one and θi,c equals zero for all signals, the model
defined by Eq. (7) is the same as JSM-3 (cf. Eq. (1)). Here-
after, the signal model is called JSM with amplitude and phase
differences (JSMAP).

3.2. ADMM-based algorithm for reconstructing JSMAP
Signals

Here we formulate a JSMAP reconstruction algorithm based
on ADMM and FPC.

Problem 3.1 (Reconstruction Algorithm of JSMAP Problem)

min
xi,si ∀i∈Ω

1
2

∑
i

‖yi − Ψixi‖2
2 + w̄

∑
i

‖sd,i‖1, (9)

subject to,

xi = zc,i + zd,i, ∀ i ∈ Ω, (10)

zc,i = aiec,i, ∀ i ∈ {1, 2, · · · , Nc − 1} = Ω− (11)

ec,i = Λθizc,i+1, ∀ i ∈ Ω−, (12)
zd,i = Φsd,i, ∀ i ∈ Ω, (13)

where ei ∈ RN×1 and sd,i ∈ CN×1.

The object function Eq. (9) and constraint equations are ex-
plained as follows:

• Eq. (10) corresponds to the basic DCS model Eq. (1).

• Eqs. (11) and (12) are obtained by conserning the
JSMAP relation Eq. (7) of common component zc,i

and decompositing it; thus,

zc,i = aiec,i, and, ec,i = Λθizc,i+1,

• Eq. (13) corresponds to the basis transform of innova-
tion component zd,i ∀i ∈ {1, 2, · · · , Nc}.

An inner loop of the ADMM algorithm for Problem 3.1 is
constructed so as to minimaze a function defined in Eq. (14)
for each variables, xi, zc,i, zd,i, ec,i, sd,i, ai and θi, and up-
date Lagrange multipliers λi, µc,i, νc,i, ξd,i ∈ RN×1, sequen-
tially as Algorithm 1.

H =
∑
i∈Ω

1
2
‖yi − Ψixi‖2

2

+
∑
i ∈Ω

{
λT

i (xi − (zc,i + zd,i))

+
α

2
‖xi − (zc,i + zd,i)‖2

2

}
+

∑
i ∈Ω−

{
µT

c,i(zc,i − aiec,i) +
β

2
‖zc,i − aiec,i‖2

2

}
+

∑
i ∈Ω−

{
νT
c,i(ec,i − Λθizc,i+1)

+
γ

2

∥∥ec,i − Λθizc,i+1

∥∥2

2

}
+

∑
i ∈Ω

{
ξT
d,i(zd,i − Φsd,i) +

σ

2
‖zd,i − Φsd,i‖2

2

}
+ w̄

∑
i ∈Ω

‖sd,i‖1, (14)

where α, β, γ, σ are penalty constants. Note that the mini-
mization steps of sd,i are performed by the FPC algorithm
(Algorithm 2).

Unfortunately, the above problem is not a convex problem
but biconvex one. Hence, a solution to it may not be not glob-
ally optimal. However, the results of numerical simulation
encourage us to use the algorithm for reconstructing JSMAP
signals.

4. EXPERIMENTAL EVALUATION

4.1. Configuration

We applied our algorithm to computer-generated JSMAP
signals to confirm its reconstruction performance for model-
based signals. In addition, we evaluated the performance of
the algorithm for real EMG signals and compared it with
that of other conventional ones. For the computer-generated
JSMAP signals, the experiment configuration was follows:

• set frame length N = 100
• generate nonsparse zc randomly, and generate zd,i as

sparseness S = 8 in Fourier space for each channel
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Fig. 1. Wave forms of channel i = 1, 2, 3

• set ai,c and θi,c randomly in ranges 0.8 < ai,c < 1.2
and −0.5 < θi,c < 0.5

• set yi = Ψi(ai,cΛθi,czc + zd,i) + ni = Ψixi + ni

• set w = 10−6, η = 4, stol = 10−7, and α = β = γ =
σ = 1/2,

where ni is an additive white noise, and
√

N‖ni‖2√
M‖xi‖2

< 10−6.
The penalty constants are empirically-determined. We simu-
lated 100 times for each number of observation per channel
M . We measured the performance by the probability of suc-
cessful reconstruction. We define the successful reconstruc-
tion when their maximum of relative errors of all channels is
less than 10−3.

To show the efficiency of our algorithm compared to the
conventional ones for real signals, we employed Nc = 3-
channel EMG signals [20]. An example of the signals is
shown in Fig. 1, which are resampled at 2 kHz (the orig-
inal sampling frequency is 10 kHz) and shifted to maximize
cross-correlation functions. The configuration was as follows:

• set frame length N = 1024
• set w = 10−1, η = 2, stol = 10−4, and , and α = β =

γ = σ = 1/2,
We simulated 100 times (i.e. 100 EMG signals) for each M .
We compare the performance of our algorithm and conven-
tional one by the SNR defined as

∑
i

‖xi‖2
2

‖xi−x̂i‖2
2
/Nc, where xi

and x̂i are the original signal and reconstructed signal of the
i th sensor, respectively.

The obserbation matrices Ψi ∈ RM×N for both exper-
iments are what is called causal random sampling matrices
and whose entries are all zeros except for the M entries in M
different columns and rows.

4.2. Results

For the computer-generated signals, one can be sure our al-
gorithm works in moderate condition (Fig. 2). One can also
notice that the algorithm works more efficiently as the num-
ber of channels increases. Especially, one can successfully
recover signals from about 50 % randomly sampled data in
the 8 channels case. The results for our algorithm applied
to real EMG signals (see Fig. 3) suggest that the developed

Fig. 2. Probability of perfect reconstruction vs. observation
number M each channel with fixed sparseness S = 8. The
results show feasibility of our algorithm for JSMAP signals
reconstruction.

Fig. 3. Averages of SNR of the reconstructed real EMG sig-
nals. Our algorithm overcome other two conventional one.

method outperforms the conventional ones at the same num-
ber of measurements. Thus, our signal model and algorithm
are effective when the obtained signals are originated from
one source. With less than 60 % of randomly sampled data,
one can obtain moderate SNR signals.

5. CONCLUSION

In this paper, we presented a new signal model in DCS and a
reconstruction algorithm for the model to reduce the number
of samples required for accurate observation. Our target is to
deal with time series signals originated from some source and
obtained via sensors located in the field, such as a speaker
in DOA estimation application and a set of muscle-fibers in
EMG measurement. To do this, we introduced additional co-
efficients that represent attenuation and time delay in JSM-3,
and devised a reconstruction algorithm based on ADMM and
FPC. We evaluated the performance of our algorithm for both
computer-generated JSMAP signals and real EMG ones, and
demonstrated the advantage of our method compared to con-
ventional ones that do not consider attenuation and time delay
in the reconstruction of the actual signals. Therefore, the de-
veloped method can be applied to low-complexity compres-
sion scheme in the multichannel sensing system for a DOA
estimation or an EMG measurement application.
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