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ABSTRACT

In classical spotlight-mode synthetic aperture radar (SAR), a mobile
sensor array is steered to always focus on the same area (spot) as it
moves, transmitting pulses to illuminate the spot and receiving and
processing their reflections. The result is a high resolution image,
covering a relatively small area. In this paper, we propose using a
randomly steerable sensor array for synthetic aperture imaging, aim-
ing to increase the coverage area without sacrificing the imaging res-
olution. This is realized by steering the beam of the array such that
each transmitted pulse illuminates one of two or more spots, ran-
domly selected with equal probability. Each of those spots has the
same size as a single spot in a classical array, effectively doubling
(or more) the total area illuminated. Using principles from compres-
sive sensing (CS) we demonstrate that it is possible to reconstruct
the images of all illuminated areas by exploiting the structure of the
reconstructed images. Our experimental results demonstrate that our
random steerable array can double coverage with almost the same
imaging resolution.

Index Terms— synthetic aperture radar, synthetic aperture
imaging, random steering, compressive sensing

1. INTRODUCTION

1.1. Background

Synthetic aperture radar (SAR) exploits the motion of moving sen-
sors to form a large synthetic aperture, thus improving the imag-
ing resolution. In spotlight-mode, the sensors are steered to always
illuminate a single area (spot) of interest using pulses transmitted
at uniform time intervals. The sensor positions, in which pulses
are transmitted and reflections are recorded, synthesize a large vir-
tual aperture producing significantly higher imaging resolution com-
pared to physical aperture arrays or strip-map mode synthetic arrays.
However, there is a tradeoff between imaging resolution and cover-
age. Compared to strip-map mode SAR, classical spotlight mode
can only cover a much smaller area because of its high sampling rate
requirement and restrictions on its beam geometry [1].

In this paper, we modify the fundamental operation of spotlight-
mode synthetic aperture sensing, to increase the coverage area (also
referred to as scene size) without sacrificing imaging resolution. Our
approach consists of two major contributions:

e We modify the steering mode of the array such that at any
point the beam is randomly steered to illuminate one of two
or more different spots in the scene.

e We exploit the structure of the measured scene in the recon-
struction process and recover from the loss of data due to the
modification in the measurement process.

Specifically, instead of always steering the sensor to illuminate
the same spot as it moves across the virtual aperture, we illuminate
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multiple spots in the measured scene, each with the same size as a
single spot in a classical setting, thus multiplying the total area illu-
minated. In contrast to our earlier work on strip-map mode SAR [2],
this approach does not randomize the pulsing times, only the steer-
ing. At each pulsing time, we randomly pick one of the candidate
spots to illuminate with equal probability. The randomization is nec-
essary to ensure the measurements capture enough information for
high resolution image reconstruction. Conceptually this is like miss-
ing illumination data from one spot so we can illuminate others. A
benefit of uniform pulsing is that the modifications necessary to im-
plement our approach in classical synthetic aperture system are min-
imal.

When reconstructing each of the spots, we can consider the
steerable sensor as operating exactly the same as in classical
spotlight-mode, except that only a portion of the data, randomly se-
lected, are recorded for imaging and the remaining is missing. Based
on recently developed compressive sensing (CS) techniques [3], we
develop a reconstruction algorithm and are able to reconstruct the
images of two spots, despite the missing data, by exploiting the
sparsity of the underlying reflectivity images.

In this paper, we focus on the CS-based image reconstruction
algorithm, assuming the random steering is realized by controlling
the beam-pattern electronically or by steering the sensors mechan-
ically [4]. To validate our approach, we provide experimental re-
sults using simulated acquisition with both classical spotlight-mode
and our proposed randomly-steered system. Although we sometimes
describe our work using a two-spot example, extension to multiple
spots is straightforward.

1.2. Relation to prior work

In recent years, the development of compressive sensing (CS) has
had great impact in sensing applications, including radar imag-
ing [5-9]. CS fundamentally revisits signal acquisition and allows
robust reconstruction of signals using a significantly smaller number
of measurements compared to their Nyquist rate. This sampling rate
reduction is achieved by using randomized measurements, improved
signal models and non-linear reconstruction algorithms.

Although CS has enabled significant improvements on radar and
radar imaging systems [2, 10-13], a number of challenges still ex-
ist in applying CS to radar imaging, such as developing appropriate
sparsity models of radar images and managing computational com-
plexity [5,6, 14].

Our proposed approach is related to existing classical and CS-
based radar arrays, appropriately modifying each to improve imag-
ing capabilities. Our non-uniformly steered array is based on clas-
sical steerable SAR, but with a very different steering pattern. Our
proposed architecture is straightforward to implement, even in exist-
ing synthetic aperture systems.

Our approach is also reminiscent of our earlier work on stripmap-
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Fig. 1. Spotlight steering, illustrating the path of the mobile platform
and the illumination of the scene along the path at different locations.
(a) A classical array in spotlight mode always illuminated the same
spot. (b) The proposed randomly-steered spotlight mode randomly
alternates illuminating one of two or more spots.

mode arrays [2], but it has significant differences. In that work, the
pulse timing of a non-steerable stripmap-mode SAR is randomized
to enable a larger range acquisition with no compromise in the reso-
lution. This causes interference in the received data from overlapped
reflections and missing data within a single reflection, which should
be appropriately handled in the reconstruction. Our current approach
does not exhibit such issues; for each spot area, the transmitting and
receiving process is identical to classical spotlight array, except that
only a portion of the range line data are collect for each spot.

Furthermore, our reconstruction algorithm incorporates sparse
modeling and least square estimation by decomposing the underly-
ing image into sparse part and dense part. Our proposed algorithm
outperforms algorithms using only sparsity regularization. While
we demonstrate in a two-spot example, the results can be extended
to three or more spots with simple modifications.

The paper is organized as follows. In the next section we provide
a brief overview on synthetic aperture imaging data acquisition, with
emphasis on spotlight mode. Section 3 describes how a randomly
steerable array can be utilized to increase array coverage. In Sec-
tion 4 we briefly examine CS-inspired image formation algorithms
to reconstruct from the acquired reflections. Experimental results
that confirm and validate our approach are provided in Section 5 and
conclusions in Section 6.

2. BACKGROUND OF SPOTLIGHT ARRAY

We consider general spotlight SAR imaging using a linear mono-
static array, operating as depicted in Fig. 1(a). To image an area or
scene, a mobile platform moves along the path depicted, transmits
pulse at a uniform pulsing rate and receives and records the reflec-
tion of those pulses from the imaged area. In spotlight mode, the
transmitted pulse beam is steered such that its main lobe aims at the
center of the area of interest. Each reflection from the area of interest
is effectively a convolution of the transmitted pulse with the reflec-
tivity of the area illuminated by the pulse. Thus, the data acquisition
process can be modeled as a linear operation:

y = ®x +n, (1

where y denotes the received radar echoes, x denotes the reflectivity
of the imaged area, ® models the array acquisition function of the
array parameters, and n is measurement noise.

The goal of the image formation process is to determine the sig-
nal of interest x from the array echoes y given the acquisition func-
tion ®. In other words, it solves an inverse problem. If the acquisi-
tion function @ is invertible, an obvious choice is to use the inverse

or the pseudoinverse of ® to determine x:
% =o'y. 2)

In practical synthetic aperture array systems, ® is generally dif-
ficult to model accurately and the inversion can be computationally
expensive. Typically, array image formation is achieved using one
of the well-established algorithms, such as the chirp-scaling algo-
rithm and the wave-number algorithm, which approximate the inver-
sion. Considering the large squint angle in spotlight arrays, we em-
ploy the wave-number algorithm to approximate the inversion prob-
lem [1,15].

3. RANDOMLY STEERABLE ARRAY

Our randomly steerable array operates with the same principles as
the classical spotlight-mode SAR, uniformly transmitting pulses and
receiving echoes, except that it incorporates more flexibility in steer-
ing. The operation is illustrated in Fig. 1(b). Instead of steering
the mobile sensor to always illuminate the same area as the sen-
sor moves, we illuminate two or more spots, both having the same
size as the size of a single spot in a classical system. The example
demonstrates how illuminating two adjacent spots results in illumi-
nating an area of doubled size. At different transmitting/receiving
locations, we randomly pick one of the candidate spots to illuminate
with equal probability. In the example, each of the two spots has the
same size as classical array coverage, but is illuminated by only half
the pulses, leaving the other half for the other spot.

As we discuss in Section 1, for each of the areas, the randomly
steerable system can modeled exactly the same as classical spotlight-
mode SAR, except that part of the echoes are missing. Thus, similar
to the classical spotlight sensing, we can describe the data acquisi-
tion process as a linear operation with missing data. If the array was
always steered towards area ¢, it would acquire x; through linear ac-
quisition function ®;. However, it misses some of the acquired data,
according to how the array is steered. We denote this selection pro-
cess using E;, an operator selecting only the data actually acquired
(measured). Further, we use E; to denote the complementary oper-
ator, i.e., the one selecting only the data that are not acquired (i.e.,
missing or unmeasured). Using y; and y; to denote the measured
and unmeasured data, respectively, we have

E®;x; +n, 3)

Ymi =
Yui =

Note that the E; are complementary, i.e., the portion of the data
measured from area ¢ cannot also be measured from area j # 4, and
the sum of E; is equal to the identity.

Our goal is to image all spots, even with missing data, with-
out compromising the imaging resolution. This is possible us-
ing CS-based methods that exploit the structure of the measured
scene—typically in the form of sparsity under some appropriate ba-
sis transformation—and randomness in the acquisition process to
enable accurate reconstruction. The steering randomization ensures
that the linear measurements are less correlated and fully capture the
information in the scene. Thus the measurements can be inverted
using a non-linear reconstruction process which exploits a signal
model to recover the acquired signal.

4. CS-BASED IMAGE RECONSTRUCTION

In this section, we focus on an algorithm reconstructing each area
separately using only the part of the data measured from this area.
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For notation convenience we drop the subscript ¢ from the remaining
development and we operate the algorithm in the same manner for
each area 4.

Using the notation above without the noise component, the full
data, including measured and unmeasured, can be represented as

_ | Ym| _ E
Bl
In classical CS, x is generally treated as a sparse signal, a model
generally not accurate for radar imaging. While strong components
in some domain might exist in radar imaging, the residual always
seems large and difficult to take into account. Instead, we propose

a CS-based algorithm that, instead of simply treating x as a sparse
signal, we decompose x into sparse part xs and dense residual x,:

X = Xg + X,. (6)
Substituting (6) into (5), the noisy measured data is
ym = E®x, + E®x, + n. @)

Treating E®x, as additional noise, the estimate of the sparse com-
ponent X, is

X5 = argmin ||y, — E®x||3 st [x]jo < N. (8)

Given the estimate X, we can estimate its contribution to the mea-
sured data E®X,. Assuming the residual data y,, — E®X; is due
to x,, we can obtain its least squares estimate using

%, = (E®) (ym — E®X,). )
We then have the final image by combining (8) and (9)
R=R.+ % =Xs + (E®) (y,, — E®X,). (10)

Note that the final image is not sparse, but a combination of
a sparse component, estimated using sparsity regularization, and a
dense component estimated using least-squares regularization. In
our experiments on synthetic aperture images, this reconstruction ap-
proach outperformed reconstruction approaches using only sparsity
regularization.

Letting ¥ denote the full data corresponding to X, i.e.,

%, = @'y, an
we rewrite (10) as follows
x=2'y. + (E®) (ym - E®X.) (12)

This solution is equivalent to filling in the missing data using the
reconstructed by enforcing the sparsity model only, and performing
classical least-squares imaging on the completed data. Note that E
is a selection operator, i.e., Ef = ET i.e. its pseudoinverse just fills
zero for the missing data.

Based on this idea, we formulate our algorithm as shown in
Fig. 2. In each iteration the algorithm uses the residual yﬁ,’ff Y 1o
compute an estimate of the so-far unexplained signal %® . To ob-
tain the strongest reflectors, a threshold %) is computed as a frac-
tion of the largest in magnitude signal component. The estimate of
the strongest reflectors d® is computed by imposing a hard thresh-
old H_x)(-) on %™ ie., by setting all components less than )
in magnitude to zero. This estimate is scaled using (®) such that it

explains most of the residual energy in ygff D It is then added to

1. Initialize 0 < o < 1, 2 = 0, y) = y,n.

2. FORk=1:K

(k) — @TETygrlfr—l)
7® = max(x¥|) - a
dF = H. (i(k))
y* = E&d®

<y® yEh s

(k) _—
B o <y y&) >

T
;C(Sk) - g(sk'—l)_|_ﬁ(k)d(k)
END
3. Output
Echoes:y = Efy,, + ETt‘I)ﬁgK)
Image: X o'y

Fig. 2. Reconstruction algorithm

the overall signal estimate from the previous iteration Qﬁkfl) to pro-

S(k)

duce the current signal estimate X5~ and subtracted from the resid-

ual yg,’ff Y to produce the updated residual yg,’fﬂ As the last step,
after the iterations are concluded, the algorithm uses the estimated
signal %) from the K" iteration to estimate the full data ¥ from
which it estimates the final image X using a classical imaging algo-
rithm.

Summing up, our algorithm attempts to express the sparse com-
ponent as a linear combination of spatially sparser components of
decreasing intensity in the measurements, corresponding to the most
intense reflectors. To efficiently compute the imaging process ®,
we implement the wavenumber algorithm [1]. The forward process
® can also be computed with the same efficiency with minor modi-
fications [16]. To achieve relatively good imaging performance and
fast execution we found that oo > 0.5 is a good parameter choice.

This algorithm is inspired by STOMP [17], but differs in esti-
mating the sparse signal in each iteration. In our algorithm, we do
not compute the psudo-inverse of a subset of ®; this is computa-
tionally expensive since ® is typically very large in imaging appli-
cations. Instead, similarly to the matching pursuit (MP) [18], we use
the signal value after thresholding, scaled by B™ | as an estimate
of the sparse signal. We found that this heuristic choice provides
a good trade-off between speed and accuracy compared to classical
CS algorithms.

5. EXPERIMENTS

To test our approach, we simulated echoes using a random steerable
spotlight synthetic aperture system. We tested our approach on an
idealized area with isolated targets as well as a more realistic scene
with complex-valued reflectivity. We considered the case of steer-
ing between two areas, effectively doubling the area of the acquired
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Fig. 3. (a) Classical spotlight imaging result, (b) classical spotlight
array imaging with uniform half downsampled data, (c) iterative CS
imaging on uniform half downsampled data, (d) iterative CS imaging
on random half data collected by random steerable array.

scene. To demonstrate the necessity of random steering we exam-
ined two different steering strategies: alternating between the two
spots sequentially for each pulse, and randomly steering to one spot
or the other at each pulse. The former is equivalent to uniformly
undersampling by 2 the full measurements from each spot while the
latter is equivalent to randomly undersampling the same measure-
ments by the same average rate. To demonstrate the necessity of a
sparse reconstruction algorithm, we examine how our algorithm per-
forms on the uniformly undersampled data, compared to classical
imaging algorithms.

For the first experiment, we consider an area with five isolated
scatterers. Due to space limitations, we only show imaging results
for one of the two spots. Because of the symmetry of the steer-
ing methods, the performance on the other spot is similar. Figure 3
shows the results. In particular, Fig. 3(a) shows the inversion us-
ing full data, i.e., assuming the array is always steered to the same
spot. Figure 3(b) shows the reconstruction from uniformly under-
sampled data, using a classical reconstruction method. The spatial
aliasing (ghosting) and the resulting ambiguity is prominent in the
picture. Figure 3(c) demonstrated the reconstruction using our al-
gorithm. While the ghosting due to spatial aliasing has not been
eliminated, it has been significantly attenuated. Finally, Fig. 3(d)
shows the reconstruction from a randomly sampled spot using our
algorithm. As evident, our approach does not exhibit any ghosting.

For the second set of experiments we used a real scene of com-
plex valued reflectivity, available at [19]. We perform the same ex-
periments as above, shown in Fig. 4. When using our reconstruction
algorithm we set & = 0.75 and K = 200 such that for each iter-
ation very few strong scatterers are retained. The imaging results
for classical spotlight-mode synthetic aperture imaging are shown
in Fig. 4(a). If we use half the measurements, uniformly downsam-
pled, to achieve double sized areas, the image exhibits significant
ambiguity in the form of ghosting, similar to the previous experi-
ment, shown in Fig. 4 (b). Using a randomly steerable spotlight and
a wavelet sparsity model [2] we obtain the image in Fig. 4 (c), which
is improved but still not satisfactory. Using our proposed CS-based
steering and reconstruction, the imaging result is significantly im-
proved, as shown in Fig. 4 (d) and very close the one in Fig. 4 (a)
where full data is available.

For the other spot area, we observe similar imaging performance

(© (d

Fig. 4. (a) Classical spotlight imaging result, (b) classical spotlight
array imaging with uniform half downsampled data, (c) imaging on
random half data using wavelet sparsity model, (d) imaging on ran-
dom half data using proposed algorithm.
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Fig. 5. (a) Combined view for two spots, (b) relative reconstruction
error of two spots.

using the other half of the data. Combining together the imaging re-
sults of the two spot areas, we obtain double the coverage as shown
in Fig. 5 (a), and almost the same resolution with the relative recon-
struction error plotted in Fig. 5 (b).

6. CONCLUSION

This paper describes a randomly steerable synthetic aperture imag-
ing system to increase the spotlight-mode SAR coverage without
compromising the imaging resolution. Instead of steering the spot-
light to always illuminate only one area, it is steered randomly to
illuminate one of many possible. This randomization removes ambi-
guities that lead to spatial aliasing and ghosting. To form the image
from the acquired data we propose an iterative reconstruction algo-
rithm which combines sparsity-promoting and least squares estima-
tion. Our experimental results validate our method and show that
it is possible to double the coverage area with minimal resolution
penalty.

As regarding to future research work, there are several open
questions on the performance of the system, such as the trade-off be-
tween the area covered, the sparsity of the scene and the resolution
achievable by the system. Several improvements on the reconstruc-
tion algorithm are also possible. These and other pertinent questions
are reserved in future publications.
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