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ABSTRACT

In this paper we take a new perspective on the worst case ro-
bust multiuser downlink beamforming problem with imper-
fect second order channel state information at the transmit-
ter. Recognizing that all channel covariance matrices form a
Riemannian manifold, we propose to use a measure properly
defined along this manifold in order to model the set of mis-
matched channel covariance matrices for which robustness
shall be guaranteed. This leads to a new robust beamform-
ing problem formulation for which a convex approximation
is derived. Simulation results show a dramatically improved
performance of the proposed scheme, both in terms of trans-
mission power and constraint satisfaction, as compared to the
previous methods.

Index Terms— robust downlink beamforming, imperfect
CSI, covariance based CSI, Riemannian manifold

1. INTRODUCTION

When multiple antennas are available at a basestation (BS),
beamforming techniques can be used to ensure a desired qual-
ity of service (QoS) to the users in the network [1]. However,
the performance of beamforming techniques substantially de-
pends on the quality of the channel state information (CSI)
available at the transmitter. Since the errors in the CSI are
inherent due to, e.g., erroneous CSI estimation [2], quantiza-
tion and feedback delay [3], the design of robust beamformers
that consider the channel imperfections is of major practical
importance.

A common approach to ensure robustness in this con-
text, generally referred to as worst case robust beamform-
ing, is to construct beamformers that satisfy the QoS con-
straints for all possible channel states within a region suit-
ably defined around the presumed CSI. For the slow fading
case in which instantaneous CSI is available at the transmit-
ter, robust beamformer designs have been proposed in [1]-
[6], in which the Frobenius norm has been considered as a
measure to limit the uncertainty in the CSI. Other approaches
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consider spectral norm bounds [7], rectangular bounds [8] or
more generally convex uncertainty regions [9], [10]. When
the CSI at the transmitter is based on second order statistics,
as, e.g., in fast fading scenarios, the worst case robust beam-
forming approaches [1], [11]-[15] have considered Frobenius
or weighted Frobenius norms to limit the mismatch in the pre-
sumed CSI. A different perspective is taken in the statistical
approaches of, e.g., [16], [17], in which the QoS targets are
satisfied with a certain predefined probability.

Our approach in this paper is in the context of worst case
robust beamforming with second order channel information
at the transmitter. With respect to the previously proposed ap-
proaches in [1], [11]-[14], our formulation is essentially dif-
ferent, in that we take into account the geometric structure
of the space of the covariance matrices and measure the un-
certainty region with a metric properly defined on this space.
Our proposed approach is motivated by the observation that
when second order statistical CSI is available at the transmit-
ter, the region in which the mismatched CSI must be con-
sidered consists of positive definite matrices which form a
Riemannian manifold [20]-[22]. Thus in order to correctly
characterize this set, proper Riemannian distances are more
appropriate than the previously used Frobenius norms, which
are generally overly conservative. Therefore we formulate a
new worst case robust beamforming problem, in which we use
the Riemannian distance previously derived in [21] to define
the uncertainty set around the presumed CSI, for which the
signal-to-interference-and-noise (SINR) constraints are guar-
anteed. We note that a mathematically comparable bound
was previously used in [15]. However, the motivation in [15]
was merely computational and in the problem formulation the
uncertainty sets are still bounded based on Frobenius norm.
Moreover, due to the approximations used in [15], the tech-
niques presented there are weaker competitors to our method,
as we further show through simulations. With respect to the
recently proposed approach in [19] where the uncertainty re-
gion is limited using trace bounds, our approach is more gen-
eral in that it can be employed to a larger number of error
models on the CSI.

The rest of the paper is organized as follows. After intro-
ducing the system model and the Riemannian distance in sec-
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tion 2, we formulate the new worst case robust beamforming
problem, to which we derive in Section 3 a convex approxi-
mation, based on Lagrange duality theory. Simulation results
show that our new design significantly outperforms the exist-
ing methods in terms of constraint satisfaction and transmitted
power. While in this paper our robust beamforming design is
applied to a multiple-input single output downlink scenario,
the ideas presented can be easily extended to more compli-
cated scenarios including, e.g., cognitive radio [12], [18] or
multigroup multicasting [19].

Notation: Throughout this paper we use Tr{·},E{·}
to denote the trace and expectation of a square matrix.
(·)+, vec(·), ‖ · ‖F and R(·), represent the pseudoinverse,
vectorization, Frobenius norm and the range of the matrix,
while⊗, IN and U stand for the Kronecker product, the iden-
tity matrix of dimension N and the set of unitary matrices
respectively.

2. SYSTEM MODEL

Consider a BS with N antenna elements serving K single-
antenna users. The signal transmitted at the BS is given by
x(n) =

∑K
k=1 wksk(n), where wk, sk(n) denote the beam-

forming weight vector and the zero mean unit variance infor-
mation symbol transmitted to the kth user at time instant n,
respectively. The signal at the kth receiver can be written as
yk(n) = hHk x(n)+zk(n), where hk , [hk,1, . . . , hk,N ]T de-
notes the downlink channel vector of the kth user, with hk,m
being the complex flat fading channel coefficient between the
mth transmission antenna and the kth receiver. zk(n) is the
additive complex circular Gaussian noise of zero mean and
variance σ2

k. At the transmitter, the available estimates of the
channel covariance matrices can be written as R̂k=Rk−∆k,
where Rk = E

{
hkh

H
k

}
and ∆k represent the true covari-

ance matrix and the estimation error for the kth user, respec-
tively. The aim of the robust downlink beamforming prob-
lem is to design beamformers which minimize the total trans-
mitted power while satisfying imposed SINR targets for all
scheduled users in the network and for all possible mismatch
matrices which lie within a predefined distance from the avail-
able channel covariance matrices. For a properly defined dis-
tance metric d and using dk , d(R̂k+∆k, R̂k) to specify the
distance between the true and estimated channel covariance
matrices of user k, we write the worst case robust downlink
beamforming as

min
{wi}

K∑
i=1

||wi||2 (1a)

s.t. min
R̂k+∆k�0
d2k≤α

2
k

wH
k

(
R̂k+∆k

)
wk∑K

i=1
i 6=k

wH
i

(
R̂k+∆k

)
wi+σ2

k

≥γk, (1b)

k = 1, . . .K.

where γk and αk are the imposed SINR threshold and error
bound for the kth user.

2.1. Measure Proposed to Characterize the Uncertainty
Region

In order to characterize the uncertainty region for the channel
mismatches, a proper distance must be introduced to mea-
sure the dissimilarity between the true and the estimated CSI.
Since the Frobenius norm is known to be the shortest dis-
tance between two points in the Euclidean space, it has been
widely considered as a reasonable choice for modelling the
uncertainty sets around the presumed CSI. Indeed, the use of
this norm is well justified when limiting the mismatches in
the estimates of the instantaneous channels hk, available at
the transmitter. This is because in this case the errors may
occur arbitrarily inside a bounded set. This is however not
the case when the available CSI is based on second order
statistics. Due to their positive semidefiniteness property, the
mismatched covariance matrices cannot be considered as free
points in the Euclidean space. They form instead a Rieman-
nian manifold, in which distances are not correctly character-
ized by Frobenius norms, but by properly defined Riemannian
measures. Riemannian distances have been derived and suc-
cesfully used in different signal processing applications, e.g.,
in signal classification and feature detection [21], [22]. In this
paper, in order to measure the dissimilarity between the true
and mismatched covariance matrices on the Riemannian man-
ifold, we adopt the Riemannian distance as derived in [21]:
dR(R̂k, R̂k+∆k) = (2)√

2Tr{R̂k}+Tr{∆k}−2Tr

{(
R̂

1/2

k (R̂k + ∆k)R̂
1/2

k

)1/2}
.

Defining Ak,γk
∑K

i=1
i 6=k

wiw
H
i −wkw

H
k , and employing (2)

the optimization sub-problem in (1b) can be written as

min
∆k

−
(

Tr {∆kAk}+ Tr
{
R̂kAk

}
+ σ2

kγk

)
≥ 0 (3a)

s.t. d2R(R̂k, R̂k+∆k) ≤ α2
R,k (3b)

R̂k + ∆k � 0, (3c)
where αR,k is the kth bound on the Riemannian distance.

Therefore, our proposed robust beamforming problem be-
comes:

min
{wi}

K∑
i=1

||wi||2 s.t. (3) being satisfied for k = 1 . . .K. (4)

3. PROPOSED BEAMFORMING APPROACH

The problem in (4) is generally non-convex and therefore dif-
ficult to solve. In this section we derive a convex approxi-
mation of (4). To this aim, we rewrite the optimization sub-
problems (3) as closed form expressions, which can be re-
duced to convex reformulations. Due to the complicated form
of the expressions (2), we first derive a simple approximation
for the Riemannian distance, which we use in the following
analysis.
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Lemma 1: Let M1 and M2 be two positive definite Hermi-
tian matrices. Then

Tr
{

(M
1/2
1 M2M

1/2
1 )1/2

}
≥Tr

{
M

1/2
1 M

1/2
2

}
(5)

Proof: The term on the left hand side of (5) is the optimum
of

max
U1,U2∈U

Re
{
Tr
{
U1U

H
2 M

1/2
1 M

1/2
2

}}
, (6)

which is attained when U1 and U2 are right and left singular
matrices of M1/2

1 M
1/2
2 [24]. Since U1=U2=IN are also

feasible solutions of (6), the inequality in Lemma 1 holds. �
Applying the result of Lemma 1 on the expression in (2),

it immediately follows that

d2R

(
R̂k, R̂k + ∆k

)
≤ Tr

{((
R̂k+∆k

)1/2
−R̂

1/2

k

)2
}
. (7)

Using the upper bounds in (7), we can strengthen (3b) in
(3) and obtain the inner approximations

min
∆k

−
(

Tr {∆kAk}+ Tr
{
R̂kAk

}
+ σ2

kγk

)
(8)

s.t Tr

{((
R̂k+∆k

)1/2
−R̂

1/2

k

)2
}
≤ α2

R,k and (3c),

whose optimal value is denoted by Υ?
k. We have all elements

to make the following statement.
Proposition 1: A sufficient condition for the worst case SINR
constraints in (3) to be satisfied, i.e., Υ?

k ≥ 0 is that there
exists a set of non-negative λk such that

Xk ,

(
−IN ⊗Ak + λkIN2 bk(λk)

bHk (λk) ck(λk)

)
� 0, (9)

where
bk(λk) = −λkvec(R̂

1/2

k ), (10a)
ck(λk) = λkTr{R̂k} − σ2

kγk − λkα2
R,k. (10b)

Proof: Introducing Qk,
(
R̂k+∆k

)1/2
problem (8) becomes

equivalent to

min
Qk

− Tr
{
QkAkQ

H
k

}
− σ2

kγk (11a)

s.t.Tr

{(
Qk −R̂

1/2

k

)(
Qk−R̂

1/2

k

)H}
≤ α2

R,k, (11b)

Qk=QH
k . (11c)

Note, that in (11), the constraints (11c) are redundant since in
their absence any optimal solution of (11) is still Hermitian.
This can be proven as follows. If Q?

k is optimal for the prob-
lem formed by (11a) and (11b), then Q?H

k is also optimal and
the first-order optimality conditions [23] imply that

Q?
k (−Ak + λkIN ) = (−Ak + λkIN )Q?

k = R̂
1/2

k . (12)
From (12) and further using [24, Th 1.3.12] it follows that
Q?
k=Q?H

k . Therefore, with qk,vec(Qk), (11) can be equiv-
alently written as

min
qk

− qHk (IN⊗Ak)qk−σ2
kγk (13)

s.t. qHk qk−2Re
{
vecH

(
R̂

1/2

k

)
qk

}
+Tr{R̂k}−α2

k≤0.

Since (13) represents a quadratic program with a single
quadratic constraint, strong duality holds if it admits a strictly

feasible solution [23]. In the case of (13), strong duality can
be claimed for any positive αk, due to the strict feasibility of

qk=vec
(
R̂

1/2

k

)
.

Using the notations in (10a) and (10b), the dual problem
of (13) can be written as

max
λk

ck(λk)−bHk (λk) (−IN⊗Ak+λkIN2)
+
bk(λk) (14)

s.t.− IN ⊗Ak + λkIN2 � 0

bk(λk) ∈ R(−IN ⊗Ak + λkIN2)

Due to the strong duality property, it follows that, a non-
negative optimum value for (14) guarantees the satisfaction
of the worst case SINR constraints (3). Furthermore, since
the objective of the dual is always smaller or equal than the
primal for all feasible points, it is sufficient to find one λk in
the feasible set of (14), such that the objective is non-negative.

Finally, using Schur complement, it is proven in [23, Ap-
pendix A5.4] that λk is in the feasible set of (14) and achieves
a non-negative objective value if and only if Xk � 0, where
Xk is defined in equation (9). �

Therefore the worst case SINR constraints (3) in (4) can
be replaced by (9). Moreover this allows for a convex re-
formulation, as follows. Introducing W k , wkw

H
k , for

k = 1, . . . ,K and using the semidefinite relaxation proce-
dure [25], the initial problem (4) can be rewritten as

min
{W i,λi}

K∑
i=1

Tr{W i} (15)

s.t. (9), W k � 0, λk ≥ 0, k = 1, . . .K

If the resulting optimal matrices W k exhibit a rank larger
than one randomization techniques [25] can be used.

4. SIMULATIONS

We consider two scenarios in which different error models
are assumed for the covariance matrices and show the per-
formance of our algorithm in terms of transmission power
and SINR satisfaction as compared to the methods in [13]
and [15]. In order to illustrate the choice of the thresholds
used in the comparison, we briefly present the measures em-
ployed in [13] and [15] to characterize the mismatches. In
[13] the uncertainty region is bounded as ‖∆k‖F ≤ αF,k
where αF,k denotes the imposed uncertainty thresholds under
Frobenius norm. In [15], the following approach is taken to
simplify the positive semidefiniteness contraints on R̂k+∆k.
Assuming the estimated covariance matrix is decomposed as
R̂k , P kP

H
k , then R̂k + ∆k =

(
P k+∆k

)(
P k+∆k

)H
,

where ∆k=PH
k ∆k+∆

H

kP k+∆
H

k ∆k. Thereafter, Frobenius
norm is used to bound both ∆k i.e., the mismatch on the avail-
able covariance matrix and ∆k, the mismatch on the square
root of the erroneous CSI. If αF,k is the threshold on ∆k and
we denote by ηk the threshold on ∆k it holds that[15]:

αF,k ≤ 2ηk‖P k‖F + η2k. (16)
For our first simulation we use the scenario in [15], where
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Fig. 2. Histogram of weighted SINR with error bound on the
covariance matrix

each error matrix ∆k is generated uniformly within a sphere
around the true covariance matrix.

This reflects the case when quantized covariance based
CSI is available at the transmitter. The true covariance matri-
ces are modelled as in [26],where the angular spread is 2◦ and
users are positioned at [10◦, 10◦ + θs, 10◦ + 2θs], with θs
denoting the separation angle. For an SINR level of 5dB for
each user, and uncertainty thresholds αF,k=0.15 and αR,k as
well as ηk chosen according to (16), the transmission power is
plotted in Figure 1. For further comparison, we plot in Figure
2 the histogram of the normalized QoS defined as

wH
k

(
R̂k+∆k

)
wk

γk
∑K

i=1
i6=k

wH
i

(
R̂k+∆k

)
wi+γkσ2

k

. (17)

We note from Figure 2 that our method respects all contraints
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Fig. 3. Transmission power for the LS estimation and finite
sampling case
without significant oversatisfaction as observed in the previ-
ous techniques of [13] and [15]. This further confirms the
performance improvement obtained by our method in terms
of transmission power.
In the second scenario we assume that the channels at the re-
ceiver are estimated using a Least Squares (LS) algorithm. In
order to use realistic thresholds, we proceed as follows. We
generate a large number of true and estimated channels, create
the estimated covariance matrices and compute the Rieman-
nian and Frobenius distances. The final thresholds are then
chosen such that 95% of the distances are within their corre-
sponding bounds. The covariance matrices are generated as
described in the following. We use the true covariance ma-
trices Rk as defined in [26] and assume a realization of the
true channel as hk = UkΛ

1/2
k vk, where Uk and Λk result

from the eigenvalue decomposition Rk = UkΛkU
H
k , while

vk are random Gaussian vectors. This corresponds to the gen-
eral Rayleigh channel model with spatial correlation. The LS
channel estimate in this case is given by ĥk = h + T+ek,
where T is the training matrix that can, e.g., be chosen as
a weighted DFT and ek is the zero mean complex circular
Gaussian error of the channel estimate for the kth user. Then
the estimated covariance matrix is R̂k = 1/Ns

∑Ns

k=1 ĥkĥ
H

k ,
where Ns denotes the number of training snapshots. In our
simulation 3000 true and estimated covariance matrices were
used to obtain the thresholds of the mismatch set under Rie-
mannian and Frobenius metrics. The remaining system pa-
rameters of the LS estimation are as follows: the number of
training symbols is 6, the training power is 15dB, the variance
of the estimation error is −20dB and Ns = 512. For these
bounds, we plot in Figure 3 the required transmission power
for a BS with 6 antennas to serve 3 users positioned such that
the separation angles between them is 7◦. We note that our
method not only requires less transmission power but also re-
mains feasible for larger SINR values. Furthermore in all the
simulations presented, we have obtained rank one solutions,
therefore randomization techniques have not been required.
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