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ABSTRACT

The dominant mode rejection (DMR) adaptive beamformer (ABF)
is a reduced-rank version of the standard minimum variance distor-
tionless response (MVDR) ABF. DMR uses a structured estimate
of the covariance matrix derived from an eigendecomposition of the
sample covariance matrix. This paper exploits results from random
matrix theory to fit a distribution for the SINR loss of the DMR ABF
in the single interferer case. Monte Carlo simulations confirm the ac-
curacy of these expressions. SINR loss quantifies the rate at which
the performance of the DMR ABF converges to the performance of
the optimal processor. For the single interferer case, the mean SINR
loss only depends on the number of snapshots.

Index Terms— adaptive arrays, beamforming, random matrix
theory, sample covariance matrix

1. INTRODUCTION

Applications such as passive sonar require detection and local-
ization of quiet sources in the presence of interfering signals and
background noise. When the interferers are loud, adaptive pro-
cessing is typically required since interference can leak through the
sidelobes of a conventional beamformer (CBF) and mask a quiet
source. Many narrowband adaptive beamformers (ABFs) rely on
knowledge of the second-order statistics to determine an appropriate
set of weights. For example, the minimum variance distortionless
response (MVDR) ABF developed by Capon [1] has the weight
vector w:

w = (vH
s Σ−1vs)

−1Σ−1vs, (1)

where Σ is the ensemble covariance matrix (ECM) of the narrow-
band data and vs is the planewave replica vector associated with
the steering direction. In practice the ECM is not available and is
replaced by the sample covariance matrix (SCM). Performance de-
pends on the number of snapshots available to estimate the SCM.
Abraham and Owsley proposed a reduced-rank version of MVDR
called dominant mode rejection (DMR) [2]. The DMR ABF uses a
structured estimate of the covariance matrix derived from an eigen-
decomposition of the SCM. The structured covariance used in DMR
models only the loudest discrete interferers, thus it typically requires
fewer snapshots to estimate. DMR is related to other eigenspace
ABFs, such as those proposed by Hung and Turner [3], Van Veen [4],
and Chang and Yeh [5]. The key difference between DMR and these
other eigenspace approaches is that DMR assumes its reduced-rank

∗KEW was supported by ONR Award N00014-12-1-0048.
†JRB was supported by ONR Award N00014-12- 1-0047.

subspace contains only interference, whereas the other approaches
assume that the subspace contains both the desired signal and the
interference. These differing assumptions lead to fundamental per-
formance differences, particularly when the subspaces must be esti-
mated from the SCM. See Van Trees [6, pp. 556-575] for examples
comparing DMR with other eigenspace algorithms. DMR’s assump-
tion about the subspace means that it is especially suitable for appli-
cations where the source is very quiet compared to the interferers.

It is important to know how many snapshots an ABF requires to
achieve a desired level of performance. A metric that is often used
to quantify convergence time is the output signal-to-interference and
noise ratio (SINR) loss. SINR loss is defined as the ratio of the SINR
obtained using sample statistics to the SINR obtained with ensemble
statistics. Thus SINR loss quantifies how close an ABF comes to the
performance of an optimal processor (one that knows the true statis-
tics). In a classic paper, Reed et al. show that the SINR loss of the
MVDR ABF is beta-distributed [7]. Their results demonstrate that
MVDR requires at least twice as many snapshots as sensors to get
within 3 dB of the optimal SINR. No one has derived a comparable
theoretical result for the SINR loss of the DMR ABF. Some authors,
e.g., Chang and Yeh [5] and Feldman and Griffiths [8], derive re-
sults for other eigenspace approaches, but these are not applicable to
DMR due to different assumptions about the contents of the reduced-
rank subspace.

The goal of this paper is to obtain the statistics of SINR loss
for the DMR ABF. The paper focuses on the case of a single inter-
ferer since it illustrates the fundamental aspects of the problem and
provides useful insights. This study builds on our previous work
analyzing the DMR ABF using random matrix theory (RMT) [9,
10, 11]. An important advantage of RMT is that it facilitates anal-
ysis when the number of snapshots is less than the number of sen-
sors. Since reduced-rank ABFs are designed to operate with low
numbers of snapshots, it is crucial to have valid performance pre-
dictions for snapshot-deficient cases. Our previous DMR analyses
build on recent RMT results on the accuracy of the eigenvectors of
the SCM [12, 13, 14].

The rest of the paper is organized as follows. The following sec-
tion defines notation and provides background on narrowband beam-
forming using DMR. Sec. 3 reviews the relevant results from our
previous RMT analysis of the DMR ABF. Sections 4 and 5 present
the new results for the mean SINR loss and the distribution of SINR
loss, respectively. Sec. 6 concludes the paper.
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2. BACKGROUND

Consider the narrowband planewave beamforming problem. As-
sume that the measured sensor data vector p consists of a single
loud planewave interferer plus spatially-white noise: p = b̃1v1 +n,
where b̃1 is the random complex amplitude of the interferer, v1 is
the interferer replica, and n is the noise vector. b̃1 is a complex
circular Gaussian random variable and n is a vector of independent
complex circular Gaussian random variables. Using weight vector
w, the beamformer output is wHp, where H denotes the Hermi-
tian transpose. The remainder of this section provides the necessary
background on the DMR ABF and develops simplified expressions
for the SINR in the single interferer case.

2.1. Dominant Mode Rejection Adaptive Beamformer

As noted in the introduction, the DMR ABF relies on a structured
estimate of the covariance matrix that is based on the eigendecom-
position of the SCM. Consider the SCM estimated using L snapshots
and its eigendecomposition:

S =
1

L

LX
l=1

plp
H
l =

NX
n=1

gneneH
n .| {z }

eigendecomposition

(2)

The array has N sensors. gn is the nth sample eigenvalue and en

is the nth sample eigenvector. DMR assumes that the eigenvectors
associated with the D largest eigenvalues define the interference sub-
space. It approximates the covariance matrix as the sum of the inter-
ference subspace plus an estimate of the noise subspace, i.e.,

SDMR =

DX
n=1

gneneH
n| {z }

largest e−vals

+

NX
n=D+1

s2
weneH

n (3)

where s2
w is the estimated noise power:

s2
w =

„
L

L− 1

« „
1

N −D

« NX
n=D+1

gn. (4)

Note that s2
w is the average of the lowest eigenvalues scaled by L

L−1
,

which accounts for the inherent bias in the sample variance calcula-
tion. The DMR ABF weight vector has the same form as the MVDR
weight vector defined in (1) with Σ replaced by SDMR, i.e.,

wDMR =
“
vH

s S−1
DMRvs

”−1

S−1
DMRvs, (5)

where vs is the planewave replica associated with the steering direc-
tion.

Computing the DMR weight vector requires knowledge of the
rank D of the interference subspace. In practice D is estimated
from data using standard criteria such as those described by Wax
and Kailath [15] and Nadakuditi and Edelman [16]. For the single
interferer case considered in this paper, assume that D = 1 is known.

Similar to other ABF algorithms, DMR performs poorly if the
interferer moves inside the mainlobe. For this reason most DMR
implementations have a test to exclude sample eigenvectors that are
close to the steering direction. Cox and Pitre suggest removing an
eigenvector when the generalized cosine squared between it and the
steering replica is greater than 0.5 [17], meaning that it lies within
the -3 dB points of the mainlobe.

2.2. SINR for the Single Interferer Case

The output SINR for a planewave source with power σ2
s is defined

as

SINR ,
σ2

s |wHvs|2

wHΣI+Nw
, (6)

where vs is the replica associated with the source and ΣI+N is the
ensemble interference-plus-noise (I+N) covariance matrix. Note that
while the ensemble I+N matrix is used for the SINR calculation, the
weight vector in (6) is computed using the estimated DMR covari-
ance SDMR. For the case of a single interferer in spatially-white
noise, the ensemble covariance is defined as ΣI+N = σ2

1v1v
H
1 +

σ2
wI, where σ2

1 is the interferer power, v1 is the interferer replica,
and σ2

w is the noise power. Substituting the ECM into (6) and rear-
ranging yields

SINR =

σ2
s

σ2
w
|wHvs|2

σ2
1

σ2
w
|wHv1|2 + wHw

=
SNR · |wHvs|2

INR · |wHv1|2 + wHw
, (7)

where SNR and INR are the signal-to-noise ratio and interference-to-
noise ratio, respectively. Assuming that the ABF is steered towards
the true source direction, |wHvs|2 equals 1. In this case the SINR
can be written as a function of the beamformer notch depth (ND)
and white noise gain (WNG):

SINR =
SNR

INR · ND + 1/WNG
=

SNR · WNG
INR · ND · WNG + 1

. (8)

ND is the absolute value squared of the beampattern in the direction
of the interferer:

ND , |B(θ1)|2 =
˛̨̨
wHv1

˛̨̨2
, (9)

and WNG is the improvement in SNR provided by the beamformer
when the noise is spatially white:

WNG ,
1

wHw
. (10)

For a given scenario (fixed INR and SNR), (8) shows that SINR
reduces to a simple function of ND and WNG for the single interferer
case. The next section reviews relevant results about WNG and ND
for the DMR ABF.

3. REVIEW OF PRIOR RESULTS ON DMR NOTCH
DEPTH AND WHITE NOISE GAIN

In previous work we analyzed the ensemble performance of the
DMR ABF [11], used numerical simulations to characterize WNG
[11] for the DMR ABF implemented using the SCM, and applied
RMT to develop and validate a model for mean ND [9, 10]. This
section provides a brief summary of these results so they can be used
in the analysis of SINR loss.

First, the analysis of the ensemble case in [11] shows that for
high INR, the WNG of the ensemble DMR ABF is equal to:

WNGens =
N

1 + cot2(v1,vs)
, (11)

where cot2 is defined as the square of the ratio of the generalized co-
sine and sine between the interferer replica and the steering replica.
The factor of 1

1+cot2
predicts the loss in WNG of the ensemble DMR

ABF as compared to the optimal WNG of N . This loss is the cost of

3797



placing a notch in the beampattern in the direction of the interferer.
Note that in the ensemble case, the loss factor is only a function of
the interferer location relative to the look direction and not a func-
tion of the INR. For interferers outside the mainlobe, cot2 is small,
thus WNGens ≈ N .

The second result of the analysis in [11] is that the ensemble ND
is guaranteed to be deep enough that the ensemble SINR depends
only on the white noise component, i.e.,

SINRens ≈ SNR · WNGens ≈ SNR ·N, (12)

where the final expression uses the approximation for WNGens dis-
cussed above.

In addition to analyzing the ensemble performance, Refer-
ence [11] presents a detailed empirical study of the single interferer
case for a 50-element array. The environment includes a single inter-
ferer located near the peak sidelobe of the CBF and spatially-white
noise. The simulation data includes 3000 Monte Carlo trials for each
set of parameters. INR varies between -40 dB and +40 dB and the
number of snapshots varies between 2 and 50,000. The numerical
results presented in Sections 4-5 are based on the same simulation
data set. One important result of the empirical study is that, for
interferers located outside the mainlobe, the WNG of the sample
DMR ABF is concentrated around the ensemble value. Thus, it is
appropriate to assume that WNG ≈ N for all values of INR and L.

The final result needed for the SINR loss analysis is the mean
ND. Using recent results from RMT, Reference [9] develops a model
for mean ND as a function INR and the number of snapshots. A
companion paper [10] validates the ND model using data from a
recent deep water tomography experiment. Similar to a Bode plot
for frequency response magnitude, the RMT ND model produces
piecewise linear asymptotes on a log-log plot. While the model
works over a large range of INRs and interferer locations, the SINR
loss derivation below focuses on loud interferers located outside the
mainlobe. For these interferers, the model predicts that the mean ND
is inversely proportional to the number of sensors, the INR, and the
number of snapshots:

E(ND) ≈ 1

N · INR · L. (13)

4. MEAN SINR LOSS

As discussed in Sec. 1, the SINR loss ρ is defined as the ratio of
the SINR obtained using sample statistics to the SINR obtained with
ensemble statistics. For the single interferer case, ρ is

ρ ,
SINR

SINRens
=

SNR · WNG
WNG · INR · ND + 1

SINRens
. (14)

Using the approximations for SINRens and WNG discussed in the
previous section, SINR loss reduces to a function of ND and the
parameters N and INR:

ρ ≈

SNR ·N
N · INR · ND + 1

SNR ·N =
1

N · INR · ND + 1
. (15)

Assuming that ND is sufficiently concentrated about its mean, E(ρ)
can be written [18, pp. 112-113]:

E(ρ) ≈ 1

N · INR · E(ND) + 1
. (16)
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Fig. 1. Mean SINR loss as a function of snapshots for a 50-element
linear array with a single interferer located near the peak sidelobe
of the conventional beamformer. The plot compares the prediction
from (17) with estimates from simulations (3000 Monte Carlo trials)
for three different INRs: 0 dB, 20 dB, and 40 dB.

Substituting the mean ND from the RMT model in (13) and simpli-
fying yields the following expression for mean SINR loss:

E(ρ) ≈ L

L + 1
. (17)

According to (17), E(ρ) is independent of N and INR. It is impor-
tant to note that this result assumes that the array has the aperture
required to keep the interferer out of the mainlobe of the look direc-
tion.

Fig. 1 compares the mean SINR loss prediction to simulation
results. The simulations are for a 50-element linear array with a
single interferer located near the peak sidelobe of the CBF. The fig-
ure shows results for three INRs between 0 dB and 40 dB. There is
very good agreement between the RMT prediction and the simula-
tion results over the entire range of snapshot values. Note that E(ρ)
is greater than 0.5 for all values of L, which indicates that for a sin-
gle interferer, the DMR ABF only requires 2 snapshots to achieve
a mean output SINR within 3 dB of the optimal. This is consistent
with the conventional wisdom that reduced-rank ABFs require the
number of snapshots to be proportional to the number of interferers,
rather than the number of sensors [5, 8]. For a single interferer, DMR
requires two snapshots, as opposed to the 2N snapshots that MVDR
requires [7].

5. DISTRIBUTION OF SINR LOSS

As stated in Sec. 1, the goal of the paper is to obtain the distribu-
tion of SINR loss for the DMR ABF. Based on (15) the distribution
of ρ depends on the distribution of ND. While our previous RMT
analysis [9] provides an accurate prediction of mean ND, it does not
derive the associated probability distribution function (PDF). Fortu-
nately, intution about the PDF can be obtained from histograms of
simulation data. Fig. 2 shows the histogram of ND (on a linear scale)
for the case of a single interferer with 40 dB INR. The weight vec-
tor for the 50-element array was generated using L = 32 snapshots.
Based on this histogram the distribution appears to be exponential.
This hypothesis was tested using a large set of simulations for the
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Fig. 2. Histogram of ND on a linear scale obtained for a single
interferer with 40 dB INR and 32 snapshots. The red solid line is the
exponential PDF with the mean parameter derived from the RMT
ND model.

50-element array. The simulations are for a single interferer located
near the peak sidelobe of the CBF. The simulations considered snap-
shot values between 2 and 50,000 and INRs between 0 and 40 dB.
Kolmogorov-Smirnov (K-S) tests [18] of this data set indicate that
the ND is exponentially-distributed when L ≥ 32 and INR ≥ 30 dB.
For lower INRs, ND is exponentially-distributed for some snapshot
cases, but not all.

Based on the results of the K-S tests, it appears that ND is
exponentially-distributed for sufficiently high INR. Recall that the
exponential PDF has a single parameter a [18]:

fND ≈


ae−a(ND) ND ≥ 0
0 ND < 0

, (18)

where a is the mean of the exponential random variable. Accord-
ing to the RMT ND model, a should be 1/(N · INR · L). Since the
standard deviation of an exponential random variable is equal to its
mean, the RMT model should predict the spread of ND. To check
this prediction, Fig. 3 plots the standard deviation of ND as a func-
tion of snapshots for the simulation data set. The black lines overlaid
on the plot are the predicted standard deviation based on the RMT
model. The agreement is very good for a wide range of L values.

Assuming that the ND is an exponential with known mean, it is
straightforward to derive the cumulative distribution function for ρ
using (15) and differentiate to obtain the PDF. The resulting PDF is
fρ:

fρ(ρ) ≈ LeL

ρ2
e−L/ρ. (19)

Fig. 4 compares the analytical PDF of SINR loss with histograms
of simulation data. The solid lines show the model prediction for
three snapshot cases (L = 5, 10, 50), and the symbols show the
histograms for the same cases. The agreement between the analytical
predications and the simulation data is quite good.

6. SUMMARY

This paper presents new theoretical results for the SINR loss of the
DMR ABF in the single interferer case. Monte Carlo simulations
confirm the accuracy of the predictions for the mean and the distri-
bution. Assuming that the array has sufficient aperture to keep the
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Fig. 3. Standard deviation of ND versus number of snapshots on
a log-log scale. The colored lines and symbols show the average
results for 3000 Monte Carlo trials. The black lines overlaid on the
plot are the RMT model predictions.
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Fig. 4. PDF of SINR loss for the case of a single interferer with
40 dB INR. Solid lines are the model predictions derived from (19)
and symbols indicate the histogram data based on the simulations.

interferer out of the mainlobe, the mean SINR loss only depends on
the number of snapshots, and is not a function of array size. The de-
rived distribution of SINR loss indicates that the DMR ABF is likely
to achieve performance within 3 dB of the optimal beamformer with
only a few snapshots when there is a single interferer. Future work
will focus on extending these results to the multiple interferer case.
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