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ABSTRACT

We consider robust adaptive beamforming in the presence of steer-

ing vector uncertainties. A Bayesian approach is presented where

the steering vector of interest is treated as a random vector with a

Bingham prior distribution. Moreover, in order to also improve ro-

bustness against low sample support, the interference plus noise co-

variance matrix R is assigned a non informative prior distribution

which enforces shrinkage to a scaled identity matrix, similarly to di-

agonal loading. The minimum mean square distance estimate of the

steering vector as well as the minimum mean square error estimate

of R are derived and implemented using a Gibbs sampling strategy.

The new beamformer is shown to converge within a limited number

of snapshots, despite the presence of steering vector errors.

Index Terms— Robust adaptive beamforming, Bayesian esti-

mation, Bingham distribution, Gibbs sampling.

1. PROBLEM STATEMENT AND ASSUMPTIONS

Let us consider the classical problem of designing an adaptive beam-

former w which maximizes the signal to interference and noise ratio

(SINR) for an assumed signature of interest v̄, from observation of

K measurements given by

zk = α∗

kv + nk; k = 1, · · · ,K (1)

In (1), v is the actual signal of interest signature and nk stands for the

disturbance (interference plus noise) contribution. The most intuitive

method to solve this problem is to substitute the sample covariance

matrix (SCM) R̂ = K−1
ZZ

H with Z =
[

z1 · · · zK

]

for the

true covariance matrix R = E
{

nkn
H
k

}

in the so-called minimum

power distortionless response beamformer (MPDR) [1], viz

wMPDR-SMI ∝ R̂
−1

v̄. (2)

Unfortunately, the beamformer in (2) suffers from poor performance

in low sample support [1,2]. Additionally, it degrades significantly in

the presence of steering vector errors, i.e., as soon as v 6= v̄. Indeed,

since v̄ is the assumed signature of interest, the contribution α∗

kv in

zk is perceived as an interference, which should be eliminated. It

hence results in the so-called self nulling phenomenon, which leads

to a dramatic SINR loss. The most celebrated approach to mitigating

steering vector errors as well as small sample size is diagonal loading

(DL) [3, 4]:

wDL−v̄ ∝
(

R̂+ µI
)

−1

v̄. (3)
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DL emerges as the solution of many different problems. It is a nat-

ural way to regularize the maximum likelihood covariance matrix

estimate. It also corresponds to a MPDR beamformer for which a

desired value of the white noise array gain is enforced [1, 5]. Ac-

cordingly, the robust Capon beamformers of [6–8] which, originally,

attempt to minimize the output power subject to v belonging to a

sphere centered around v̄, or to maintain a minimum gain within this

sphere, boil down to diagonal loading. In the same vein, the doubly

constrained Capon beamformer of [9] which imposes a norm con-

straint of the steering vector also results in a DL-type beamformer. In

the latter references, the loading factor µ depends on the uncertainty

sphere radius. Other researchers have also investigated some way to

automatically choose the optimal loading level, see e.g., [10, 11].

In this paper, a Bayesian approach to robust adaptive beamform-

ing in the presence of steering vector mismatches is proposed. More

precisely, we assume that v is random and drawn from a prior dis-

tribution which depends on v̄. Additionally, we show how DL can

be embedded in a Bayesian framework, by assigning a specific prior

distribution to R.

Let us thus describe our statistical model. First, the interference

plus noise vectors nk are assumed to be independent and identically

distributed (i.i.d.) according to a zero-mean complex-valued Gaus-

sian distribution with covariance matrix R, i.e.,

p (nk|R) = π−N |R|−1 exp
{

−n
H
k R

−1
nk

}

(4)

where |.| stands for the determinant of a matrix. Additionally, we

assume that R is drawn from an inverse Wishart distribution [12,13]

with mean µIN and ν degrees of freedom, viz

π (R) ∝ |R|−(ν+N)etr
{

−(ν −N)µR−1}
(5)

where ∝ means proportional to and etr {.} stands for the exponential

of the trace of the matrix between braces. Note that the distribution

in (5) is non informative as it is a maximum entropy prior distribu-

tion subject to E
{

Tr
{

R
−1

}}

= c1 and E {log |R|} = c2 [14],

and it does not depend on any prior covariance matrix. As will be

evidenced later, see (19), this choice results in a posterior mean of

R which corresponds to diagonal loading. As for the amplitudes

αk, they are assumed to be i.i.d. and follow a complex Gaussian

distribution with zero mean and variance σ2
α, i.e.,

π
(

α|σ2
α

)

∝ exp
{

−σ−2
α α

H
α

}

(6)

where α =
[

α1 · · · αK

]T
. Furthermore, we assume that σ2

α

follows an inverse-Gamma distribution, denoted as σ2
α ∼ IG (a, b),

whose expression is

π(σ2
α) ∝

(

σ2
α

)

−(a+1)
exp

{

−bσ−2
α

}

. (7)
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The above distribution is mainly chosen for mathematical tractability

since it is a conjugate prior with respect to (6). Note however that,

depending on the choice of a and b, this prior can be made rather

non informative. Lastly, we consider the distribution of v. Herein,

we assume that ‖v‖ = 1 and that it follows a complex Bingham

distribution [15, 16]:

π(v) ∝ exp
{

κ|vH
v̄|2

}

(8)

where κ is a positive scalar and v̄ is the unit-norm nominal steering

vector. The distribution in (8) depends on cos2 θ where θ is for the

angle between v and v̄: thus, all vectors v who lie on the frontier

of a cone whose axis is v̄ and whose aperture is θ are equally likely.

It should be mentioned that this model differs from the classical ad-

ditive steering vector error. The scalar κ serves as a concentration

parameter: the larger κ the closer v and v̄. More precisely, it is

possible to show that

E
{

|vH
v̄|2

}

= 1− 1

κ

γ(N,κ)

γ(N − 1, κ)
(9)

where E
{

|vH
v̄|2

}

is approximately the average square distance be-

tween v and v̄, and is seen to be inversely proportional to κ. This is

illustrated in Figure 1 where we plot the distribution of θ for different

values of κ.
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Fig. 1. Distribution of the angle between v and v̄, when v is drawn

from (8), for different values of κ. N = 16.

Our objective is, from the statistical assumptions stated in (4)-

(8), to obtain the minimum mean-square error (MMSE) estimate

R̂mmse of R

R̂mmse = E {R|Z} =

∫

R p (R|Z) dR (10)

as well as the minimum mean-square distance (MMSD) estimate of

v. The latter is defined as [17]

v̂mmsd = argmin
v̂

E
{

sin2 (v̂,v)
}

= argmax
v̂

E
{

∣

∣

∣
v̂
H
v

∣

∣

∣

2
}

= P
{
∫

vv
Hp (v|Z) dv

}

(11)

where P {.} stands for the principal eigenvector of the matrix be-

tween braces. These two quantities will then serve to obtain the

beamformer w ∝ R̂
−1
mmsev̂mmsd.

2. ESTIMATION OF v AND R

In order to obtain R̂mmse in (10) and v̂mmsd in (11), one should the-

oretically obtain the posterior distribution p (R|Z) and p (v|Z) of

R only and v only or at least their conditional joint posterior distri-

bution p (v,R|Z) by marginalizing with respect to the “nuisance”

parameters α and σ2
α. It turns out that this is intractable [18]. To cir-

cumvent this problem, we turn to a solution where α and σ2
α are esti-

mated jointly with v and R. More specifically, a Gibbs sampler [19]

is now proposed which generates samples from p
(

v|α,R, σ2
α,Z

)

,

p
(

α|v,R, σ2
α,Z

)

, p
(

R|α,v, σ2
α,Z

)

and p
(

σ2
α|α,v,R,Z

)

. As

illustrated below, these conditional posterior distributions are easy

to simulate.

Let us start with the joint posterior distribution of all variables:

p
(

α,v,R, σ2
α|Z

)

∝ p
(

Z|α,v,R, σ2
α

)

π
(

α|σ2
α

)

π (v)π (R) π
(

σ2
α

)

∝ |R|−Ketr

{

−
(

Z− vα
H
)H

R
−1

(

Z− vα
H
)

}

×
(

σ2
α

)

−(a+K+1)
exp

{

−σ−2
α α

H
α

}

exp
{

−bσ−2
α

}

× |R|−(ν+N)etr
{

−(ν −N)R−1
}

exp
{

κ|vH
v̄|2

}

. (12)

Using the fact that

σ−2
α α

H
α+ Tr

{

(

Z − vα
H
)H

R
−1

(

Z− vα
H
)

}

= σ−2
α α

H
α+Tr

{

Z
H
R

−1
Z

}

− v
H
R

−1
Zα

−α
H
Z

H
R

−1
v +

(

α
H
α

)(

v
H
R

−1
v

)

=
(

σ−2
α + v

H
R

−1
v

)

∥

∥

∥

∥

α− Z
H
R

−1
v

σ−2
α + vHR−1v

∥

∥

∥

∥

2

+ Tr

{

Z
H
R

−1
Z− Z

H
R

−1
vv

H
R

−1
Z

σ−2
α + vHR−1v

}

(13)

along with (12) it ensues that

p
(

α|v,R, σ2
α,Z

)

∝ exp

{

−
(

σ−2
α + v

H
R

−1
v

)

∥

∥

∥

∥

α− Z
H
R

−1
v

σ−2
α + vHR−1v

∥

∥

∥

∥

2
}

.

(14)

Hence α, conditioned on v,R, σ2
α,Z, is Gaussian distributed:

α|v,R, σ2
α,Z

∼ CN

(

Z
H
R

−1
v

σ−2
α + vHR−1v

,
(

σ−2
α + v

H
R

−1
v

)

−1

IK

)

. (15)

Accordingly,

p
(

v|α,R, σ2
α,Z

)

∝ exp
{

κ|vH
v̄|2 −

(

α
H
α

)(

v
H
R

−1
v

)}

× exp
{

v
H
R

−1
Zα+α

H
Z

H
R

−1
v

}

(16)
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which is recognized as a complex Bingham von Mises Fisher

(BMF) distribution [20] with parameters κv̄v̄H −
(

α
H
α

)

R
−1

and R
−1

Zα, i.e.,

v|α,R, σ2
α,Z ∼ BMFc

(

κv̄v̄H −
(

α
H
α

)

R
−1,R−1

Zα

)

.

(17)

An efficient sampling scheme for generating samples according to

a real BMF distribution was proposed by Hoff [20]. Adaptation of

this scheme to generate a complex BMF distributed vector is rather

straightforward [18]. Next, the conditional posterior distribution of

R is obtained as

p
(

R|α,v, σ2
α,Z

)

∝ |R|−(ν+N+K)etr
{

−R
−1

M (α,v,Z)
}

(18)

with

M (α,v,Z) = (ν−N)µIN+
(

Z− vα
H
)(

Z− vα
H
)H

. (19)

This conditional posterior distribution is an inverse Wishart dis-

tribution with ν + K degrees of freedom and parameter matrix

M (α,v,Z), which corresponds, up to a scaling factor, to the pos-

terior mean of R|α,v, σ2
α,Z. We would like to emphasize that

the particular choice of the prior of R in (5) results in a posterior

mean M (α,v,Z) which coincides with the usual diagonal loading.

Therefore, the prior (5) with (ν − N)µI as the parameter matrix

is a way to embed diagonal loading in a Bayesian framework, and

hence is a means to improve robustness to steering vector errors. It

is also worth noticing that the loading level is (ν −N)µ/K, which

provides a way to fix ν and µ. As a final remark, observe that the

distributions p
(

α|v,R, σ2
α,Z

)

and p
(

v|α,R, σ2
α,Z

)

depend on

R through its inverse R
−1. Since our final objective is to derive

a beamformer whose weight vector depends directly on R
−1, the

Gibbs sampler will generate directly the inverse of R from a Wishart

distribution

R
−1|α,v, σ2

α,Z ∼ CW
(

ν +K, [M (α,v,Z)]−1) . (20)

Finally, the conditional posterior of σ2
α is given by

p
(

σ2
α|α,v,R,Z

)

∝
(

σ2
α

)

−(a+K+1)
exp

{

−σ−2
α

[

b+α
H
α

]}

(21)

and hence

σ2
α|α,v,R,Z ∼ IG

(

a+K, b+α
H
α

)

. (22)

The Gibbs sampler will thus successively draw samples from

(15), (17), (20) and (22), as described in Algorithm 1.

Once these samples are available, the MMSD estimator of v and

the MMSE estimator of R−1 can be approximated by

v̂mmsd = P







1

Nr

Nbi+Nr
∑

n=Nbi+1

v(n)vH(n)







(23a)

R̂
−1
mmse =

1

Nr

Nbi+Nr
∑

n=Nbi+1

R
−1(n) (23b)

where Nbi stands for the number of burn-in iterations and Nr is the

effective number of iterations. Finally, with the above estimates

available, a beamformer can be designed whose weight vector is

given by

w ∝ R̂
−1
mmsev̂mmsd. (24)

Algorithm 1 Gibbs sampler for estimation of v and R
−1.

Input: initial values R−1(0), v(0), σ2
α(0)

1: for n = 1, · · · , Nbi +Nr do

2: sample α(n) from p
(

α|v(n− 1),R(n− 1), σ2
α(n− 1)Z

)

in (15).

3: sample v(n) from p
(

v|α(n),R(n− 1), σ2
α(n− 1),Z

)

in

(17).

4: sample R−1(n) from p
(

R
−1|α(n),v(n), σ2

α(n− 1),Z
)

in

(20).

5: sample σ2
α(n) from p

(

σ2
α|α(n),v(n),R(n),Z

)

in (22).

6: end for

Output: sequence of random variables α(n), v(n), R
−1(n),

σ2
α(n).

3. NUMERICAL SIMULATIONS

In this section, we assess the performance achieved with the beam-

former in (24). We consider a uniform linear array of N = 16 ele-

ments spaced a half-wavelength apart. The receiver noise is assumed

to be temporally and spatially white with power σ2
n. The signal of

interest (SOI) impinges from the broadside of the array so that v̄ =

a(0◦) where a(ϕ) =
[

1 eiπ sinϕ · · · eiπ(N−1) sinϕ
]T

/
√
N

is the (normalized) steering vector of the array. The signal to noise

ratio (SNR) is defined as

SNR = 10 log10
σ2
αv

H
v

Nσ2
n

and is set to SNR = 0dB. In order to simulate steering vector errors,

we consider pointing errors so that the SOI actually impinges from

the direction of arrival (DOA) ϕtrue = δ×HPBW where HPBW
stands for the half power beam width of the array [1]. It is note-

worthy that the true steering vector is not generated according to the

prior distribution. We also assume that two interference are present

with directions of arrival −15◦ and 20◦, and respective interference

to noise ratio (INR) equal to 30dB and 20dB. In order to set the val-

ues for ν and µ, we use the expression of M (α,v,Z) in (19). We

set ν = K +N so that the term due to the data and the term corre-

sponding to diagonal loading have approximately the same weight,

and hence µ corresponds to a diagonal loading level. We fix it to 5dB

above the white noise level, a good rule of thumb in practice [1]. The

Bayesian beamformer in (24) is compared with conventional diago-

nal loading using the presumed steering vector in (3) with a loading

level 5dB above the white noise level. We also consider a “clairvoy-

ant” diagonally loaded beamformer which would have knowledge of

v, i.e.,

wDL−v ∝
(

K−1
ZZ

H + µIN
)

−1

v. (25)

The latter is hypothetical but it could serve as a benchmark since it

is affected by finite-sample effects only but not steering vector er-

rors. The performance metric for quality assessment of the adaptive

beamformer will be the SINR loss with respect to the noise-only-

environment, defined by [21]

SINRloss =

∣

∣w
H
v
∣

∣

2

wHRw

1

σ−2
n vHv

. (26)

First, we study in Figure 2 the sensitivity of the Bayesian beam-

former towards the parameter κ which is the only parameter in the

Bingham prior distribution of v. It can be observed that for moder-

ate steering vector error (δ = 0.2), the SINR loss of the Bayesian
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Fig. 2. SINR loss of the adaptive beamformer versus κ. K = 32.
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Fig. 3. SINR loss of the adaptive beamformers versus K. δ = 0.2.

beamformer is nearly constant over a large range of values for κ.

Therefore, in practice, one need not tune this parameter very accu-

rately: the performance is guaranteed to be almost the same over a

rather large interval. On the other hand, for large steering vector er-

rors (δ = 0.4) the value of κ should be chosen appropriately (i.e.,

not too large) in order to accommodate the possibly large difference

between v and v̄. If one has a rough knowledge of the distance be-

tween v and v̄ then equation (9) can be used to set κ. Note however

that the case δ = 0.4 corresponds to a rather large error, the case

δ = 0.2 may be more representative. In the latter situation, hope-

fully there is no need to select very accurately κ.

We now investigate the performance versus K in Figure 3 and

versus δ in Figure 4. There we set κ = 50. The Bayesian beam-

former significantly improves upon conventional diagonal loading

using the presumed steering vector. Remarkably enough it also out-

performs the diagonally loaded beamformer constructed with the

true steering vector. Moreover, it achieves a very high rate of conver-
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Fig. 4. SINR loss of the adaptive beamformers versus pointing error.

K = 32.

gence. Indeed, the SINR loss is lower than 3dB at about K = 2N ,

a rate of convergence commensurate with that of an MVDR beam-

former, although the signal of interest is present in the measurements

and despite the presence of steering vector errors.

4. CONCLUSIONS

A new Bayesian approach for robust adaptive beamforming in the

presence of steering vector uncertainties was presented. It relies

on a Bingham prior distribution for the steering vector of interest

and an inverse Wishart prior distribution for the interference co-

variance matrix, with a parameter matrix proportional to I which

amounts to introducing diagonal loading in a Bayesian framework.

The MMSE estimator of the interference covariance matrix as well

as the MMSD estimator of the steering vector were derived and im-

plemented through a Gibbs sampling procedure. The new algorithm

was shown to provide very good performance in low sample support,

despite steering vector errors.
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