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ABSTRACT

Abstract— Minimum variance beamformers are widely used for ar-
ray signal processing. It is known that the diagonal loading method
can improve the robustness against mismatches caused by the impre-
cise steering vector (or the channel vector) and the noise covariance
matrix. Instead of concentrating on one aspect of the mismatches
and assuming perfect knowledge of the other, we handle both esti-
mation error in the steering vector and the noise covariance matrix
caused by the finite sample size simultaneously. We employ high-
dimensional asymptotics to reflect the finite sample size, and esti-
mate the optimal loading factor based on random matrix theory. In
an asymptotic setting where the number of samples is comparable
to the array dimension, we obtain a beamformer that is as good as
the beamformer with optimal diagonal loading. Monte Carlo simu-
lations show the advantage of our beamformer in the finite sample
size regime.

Index Terms— Diagonal loading, minimum variance beam-
former, finite sample size, imprecise steering vector, random matrix
theory.

1. INTRODUCTION

Robust adaptive beamforming is a key issue in array applications
such as communications, sonar, and radar [1], [2]. If an infinite
number of samples are available and the signal steering vector or
the channel vector is perfectly known, the minimum variance (MV)
beamformer is optimal since it maximizes the signal-to-noise ratio
(SNR) at the output of the beamformer.

However, in practice, the number of samples available at the re-
ceiver is not sufficiently high. The traditional MV beamformer based
on sample matrix inversion (SMI) is known to have a detrimental ef-
fect on the performance since there is estimation error between the
sample correlation matrix and the true correlation matrix of obser-
vations. Moreover, traditional MV beamforming lacks robustness
against even small mismatches in the desired signal steering vector.
One of the most popular approaches to improve the SMI-based MV
technique is the diagonal loading method. It has been shown that the
diagonal loading method can improve the robustness against mis-
matches cause by imprecise knowledge of the steering vector and
finite sample size [3], [4]; see also references therein.

There is plenty of work aiming at solving these mismatches, but
most of them focused on only one aspect. For example, the robust
MV beamformers proposed in [5] and [6] incorporated uncertainty
constraints on the steering vector but did not consider the finite sam-
ple size effect. The presence of random steering vector was consid-
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ered in [7] and a generalized loading of the covariance matrix was
applied. In other papers such as [4], the main focus was to deal
with the finite sample size effect, and a perfect steering vector was
assumed. Both types of mismatches were considered and handled
in a deterministic way [8], i.e., the worst-case design. However, the
performance could be affected by improper uncertainty set modeling
and the choice of some parameters.

In this paper, we handle both types of mismatches in the steering
vector and the correlation matrix of the observations (or equivalently,
the noise covariance matrix) simultaneously. Instead of using a pre-
sumed steering vector or channel vector, we use a pilot-assisted ap-
proach: in the training period, we estimate the steering vector and the
noise covariance matrix with the pilot and the observations, and con-
struct the beamformer using the diagonal loading method. Then in
the evaluation period, we apply this beamformer to the observations
that contain the data. We select the diagonal loading factor based on
random matrix theory: to reflect the fact that the sample size is com-
parable to the dimension of the array, we employ high-dimensional
asymptotics where both of them go to infinity. We derive the con-
vergence of the two types of coupled errors and then correct them
in the asymptotic regime. Our main contribution is to obtain an MV
beamformer which is asymptotically as good as that with an optimal
diagonal loading factor.

2. PROBLEM FORMULATION

Let us consider the M -dimensional antenna array with a sample size
of N snapshots. Let y(n) ∈ CM×1, n = 1, ..., N , denote a collec-
tion of received signal. At snapshot n, it can be expressed as

y(n) = hs(n) + n(n). (1)

Here, h ∈ CM×1 is the steering vector or the channel vector and
s(n) is the transmitting signal. Without loss of generality, we can as-
sume E(|s(n)|2) = 1. The vector n(n) ∈ CM×1 is the noise which
is independent and identical distributed (i.i.d.) Gaussian with mean
zero and a covariance matrix Rn. Note that h is not restricted to be
the conventional deterministic steering vector pointing at a certain
direction, but can also be the channel vector with arbitrary structure.
In the training period, we assume s(n) is known to us.

We let w ∈ CM×1 denote the beamformer weights, then the
output of the array at the nth snapshot can be expressed as

x(n) = wHy(n). (2)

It is shown in e.g. [2] that the MV beamformer is the optimal solu-
tion to the following problem:

minimize
w

wHRyw

subject to wHh = 1
(3)
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where Ry = 1
N
E
[
y(n)y(n)H

]
is the correlation matrix of the ob-

servations. In (3), the correlation matrix of the observations can also
be replaced with the noise covariance matrix Rn [9] due to the iden-
tity Ry = Rn + hhH , and the formulation is equivalent to the
original one. In the following, we mainly focus on the noise covari-
ance matrix Rn. This problem admits a closed form solution, which
is the clairvoyant (since it contains unknown Rn and h), namely,

wclv =
R−1

n h

hHR−1
n h

. (4)

The clairvoyant beamformer maximizes the output SNR, which is
the objective of the MV beamformer:

SNR =
|wHh|2

wHRnw
. (5)

In practice, Rn and h are not known so neither is the opti-
mal beamformer, therefore, we estimate all of them with the train-
ing sequence s(n) and the observations y(n). We define the fol-
lowing matrix notations for simplicity: let Y = [y(1), ...,y(N)],
s = [s(1), ..., s(N)]T and N = [n(1), ...,n(N)], then (1) can be
written in a matrix form:

Y = hsT +N, (6)

without loss of generality, we can assume 1
N
||s||22 = 1. (If it is not,

we can absorb that constant in h). Traditionally, we estimate the
steering vector using

ĥ =
1

N
Ys∗, (7)

and estimate the covariance matrix of the noise using the sample
covariance matrix (SCM)

R̂n,SCM =
1

N
(Y − ĥsT )(Y − ĥsT )H . (8)

The beamformer wtrd will be in the same form as in (4) while replac-
ing Rn and h with R̂n,SCM and ĥ, respectively. If the sample size N
is large enough, R̂n,SCM and ĥ are good estimates of Rn and h , and
hence wtrd is a good estimate of wclv. However, in many scenarios,
the number of available snapshots is not sufficiently high. In order
to mitigate the finite-sample-size effects, the traditional solution is
modified by the diagonal loading method:

wdl =

(
R̂n,SCM + ρI

)−1

ĥ

ĥH
(
R̂n,SCM + ρI

)−1

ĥ
. (9)

The choice of the diagonal loading factor ρ is crucial and tunes (9)
to provide a response between between the traditional SMI filter
(ρ = 0) and the matched filter ĥ ( ρ → ∞ ). Our objective is to
maximize the output SNR, and therefore we substitute (9) into the
SNR expression in (5) and obtain

SNRdl =
|hH

(
R̂n,SCM + ρI

)−1

ĥ|2

ĥH
(
R̂n,SCM + ρI

)−1

Rn

(
R̂n,SCM + ρI

)−1

ĥ
. (10)

In (10), the precise knowledge of h is partially used since it contains
the estimated ĥ. The corresponding loading factor ρ maximizing
(10) would be suboptimal compared to ρ maximizing the following
expression, which assumes the steering vector is perfectly known:

SNRdl−s =
|hH

(
R̂n,SCM + ρI

)−1

h|2

hH
(
R̂n,SCM + ρI

)−1

Rn

(
R̂n,SCM + ρI

)−1

h
.

(11)
Ideally, if we knew the true covariance matrix Rn and the steer-

ing vector h, we could directly select ρ which maximizes (10) and
obtain the corresponding beamformer. However, in our case, Rn

and h cannot be known. We tackle this problem using random ma-
trix theory: we consider a more practical scenario where the sample
size N is comparable to the array dimension M . Mathematically
speaking, this is formulated as the asymptotic regime where M and
N both go to infinity with certain ratio. We first derive a determinis-
tic quantity that (10) converges to at the double limit, and then based
on the deterministic quantity, we provide an estimator which also ap-
proaches to the deterministic quantity at the double limit. Since the
consistent estimator of (10) depends only on the observations y(n),
the transmitting signal s(n), and the diagonal loading factor ρ, we
can maximize it to obtain the optimal ρ and obtain wdl.

In the following, we will provide the main results on the deter-
ministic equivalent and consistent estimator of SNR in (10).

3. ASYMPTOTIC OUTPUT SNR WITH
DIAGONAL LOADING

In this section we provide our theoretical results on the convergence
results of (10). We first begin with technical hypotheses and some
further definitions.

3.1. Assumptions and further definitions

The following set of assumptions will be maintained throughout the
paper.

(A1) Let the spectral norm of Rn and the Euclidean norm of h
be bounded uniformly in M and N .

(A2) Let Z be an M × N matrix whose elements Zij are i.i.d.
standardized Gaussian random variables. Then the noise matrix can
be written as N = R

1/2
n Z.

We consider the limiting regime defined by both M and N grow-
ing large without bound at the same rate, i.e., M,N → ∞ such that
0 < liminf c ≤ limsup c < ∞, with c = M/N . In this lim-
iting regime, a ≍ b denotes they are asymptotic equivalents, i.e.,
|a− b| → 0 almost surely.

Before proceeding to the main theorems in this paper, we intro-
duce some further definitions: Let T = I − 1

N
s∗sT , and note that

TTH = T. Therefore, (8) can be written as R̂n,SCM = 1
N
YTYH .

Moreover, we define {δ, δ̃} being the unique positive solutions to the
following system of equations [10]:{

δ̃ = 1
N
tr
[
T(I+ δT)−1

]
δ = 1

N
tr
[
Rn(δ̃Rn + ρI)−1

]
,

(12)

and also 
γ̃ = 1

N
tr
[(
T(I+ δT)−1

)2]
γ = 1

N
tr

[(
Rn(δ̃Rn + ρI)−1

)2
] (13)

which are essential quantities for the asymptotic equivalent and esti-
mator of SNR with diagonal loading.
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We next decompose the numerator and denominator of SNRdl

into the following components. Let v = 1
N
Ns∗ and recall that

ĥ = h+ v, so that these components can be written as:

ξ1 = hH
(
R̂n,SCM + ρI

)−1

h (14)

ξ2 = hH
(
R̂n,SCM + ρI

)−1

v (15)

ξ3 = vH
(
R̂n,SCM + ρI

)−1

v (16)

ξ4 = hH
(
R̂n,SCM + ρI

)−1

Rn

(
R̂n,SCM + ρI

)−1

h (17)

ξ5 = hH
(
R̂n,SCM + ρI

)−1

Rn

(
R̂n,SCM + ρI

)−1

v (18)

ξ6 = vH
(
R̂n,SCM + ρI

)−1

Rn

(
R̂n,SCM + ρI

)−1

v. (19)

With (14)-(19), the output SNR is given by:

SNR =
|ξ1 + ξ2|2

ξ4 + ξ5 + ξ∗5 + ξ6
. (20)

3.2. Asymptotic equivalent of the output SNR

The following theorem shows asymptotic convergence of (14)-(19).

Theorem 1. Define the following deterministic quantities,

ξ̄1 = hH(δ̃Rn + ρI)−1h (21)
ξ̄2 = 0 (22)
ξ̄3 = δ (23)

ξ̄4 =
1

1− γγ̃
hH(δ̃Rn + ρI)−2h (24)

ξ̄5 = 0 (25)

ξ̄6 =
γ

1− γγ̃
(26)

Under Assumptions (A1)-(A2), we have ξi ≍ ξ̄i, i = 1, ..., 6, i.e., the
random quantities in (14)-(19) behave as the deterministic quantities
(21)-(26) in the double limit.

The proofs of Theorem 1 and the following Theorem 2 are omit-
ted for lack of space. We mainly use convergence results in [10]
and [11]. The details will be included in a full version of this paper
which is now in preparation.

The convergence results of ξ1 and ξ4 coincide with the results in
[4]. Theorem 1 enables us to analyze the asymptotic output SNR in
(10) because it is enough to analyze its asymptotic equivalent, which
is easier to characterize because of its deterministic nature. We will
next show that, Theorem 1 helps to derive the estimator of the output
SNR which only depends on the observations, the training sequence
and the diagonal loading factor, so that we can calibrate the diagonal
loading factor to maximize the estimator of the output SNR.

4. CONSISTENT ESTIMATION OF THE OPTIMAL
LOADING FACTOR

In order to calibrate the loading factor, we have to obtain an observ-
able estimator of (10). We begin with the following lemma which
provides a consistent estimator of δ.

Lemma 1. ( [10] ) Under Assumptions (As1) to (As3), a consistent
estimator of δ, denoted by δ̂, is given by:

1

N
tr

[
R̂n,SCM

(
R̂n,SCM + ρI

)−1
]
= δ̂

1

N
tr
[
T(I+ δ̂T)−1

]
.

(27)

Note that in [10] and [11], the above result holds for a general
positive semidefinite T with bounded spectral norm. However in
our case, it can be simplified further with the particular structure of
T. Recall that T = I − 1

N
s∗sT , so that T has an eigenvalue 1

with multiplicity N − 1 and an eigenvalue 0 with multiplicity 1.

Therefore, letting D = 1
N
tr

[
R̂n,SCM

(
R̂n,SCM + ρI

)−1
]

, we can

show that

δ̂ =
D/(1− 1/N)

α(1−D/(1− 1/N))
. (28)

We propose to estimate the numerator and denominator of (20)
separately. We first deal with the numerator which is easier, because
only h cannot be observed. Hence, we provide a candidate estimate

of it, i.e., ĥH
(
R̂n,SCM + ρI

)−1

ĥ. Noting that

hH
(
R̂n,SCM + ρI

)−1

ĥ

= ĥH
(
R̂n,SCM + ρI

)−1

ĥ− ξ2 − ξ3
(29)

together with ξ2 ≍ 0 (as stated in Theorem 1 (22)) and ξ3 ≍ δ̂ (as
stated in Theorem 1 (23) and Lemma 2 (27)), we can easily obtain a
consistent estimator of the numerator.

Now we proceed to provide the estimator of the denominator
of (20). We consider the following conventional (plug-in) estimator
which replaces the unknown Rn with R̂n,SCM, i.e.,

DNMcnv = ĥH
(
R̂n,SCM + ρI

)−1

R̂n,SCM

(
R̂n,SCM + ρI

)−1

ĥ.

(30)
Similarly, we can decompose DNMcnv into the following compo-
nents:

DNMcnv = ξ4,cnv + ξ5,cnv + ξ∗5,cnv + ξ6,cnv (31)

where

ξ4,cnv = hH
(
R̂n,SCM + ρI

)−1

R̂n,SCM

(
R̂n,SCM + ρI

)−1

h

(32)

ξ5,cnv = hH
(
R̂n,SCM + ρI

)−1

R̂n,SCM

(
R̂n,SCM + ρI

)−1

v

(33)

ξ6,cnv = vH
(
R̂n,SCM + ρI

)−1

R̂n,SCM

(
R̂n,SCM + ρI

)−1

v,

(34)
Regarding the components (32)-(34), we have the following results:

Theorem 2. Under Assumptions (A1)-(A2), the following conver-
gence results hold true:

aξ4,cnv ≍ ξ̄4, ξ5,cnv ≍ 0, and aξ6,cnv ≍ ξ̄6 (35)

where a = 1
1
N

tr[T(I+δ̂T)−2]
.

Theorem 2 shows that aDNMcnv is a consistent estimator of the
denominator of (20) since they have the same asymptotic equivalent.

With the above theorems and observations on the estimators of
numerator and denominator of (20), we can claim the following:
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Claim 1. The following expression is a consistent estimator of the
output SNR with diagonal loading in (10), as a function of the load-
ing factor ρ:

SINRdl−est(ρ) =
|ĥH

(
R̂n,SCM + ρI

)−1

ĥ− δ̂(ρ)|2

a(ρ)DNMcnv(ρ)
. (36)

where DNMcnv(ρ) is given in (30) and a(ρ) is defined in Theorem
2.

Now we can use exhaustive search to find the optimal ρ that
maximizes SINRdl−est(ρ) in (36).

5. MONTE CARLO SIMULATIONS

In the simulation, we show the advantage of our MV beamformer in
finite sample size settings. We let the channel vector h have com-
plex Gaussian distributed entries with mean zero and variance one,
and assume that s is complex Gaussian distributed. The covariance
matrix of noise vector is generated Rn(i, j) = σ2

n · 0.7|i−j|, where
transmitting SNR is 1/σ2

n. We compare our proposed RMT estima-
tor with the following estimators:

(Clairvoyant): It is the upper bound for all types of beamform-
ers, refer to (4).

(Optimal diagonal loading): It is the upper bound for all beam-
formers with a diagonal loading structure, whose loading factor op-
timizes (11). The true covariance matrix Rn is known and a perfect
steering vector is assumed, but the covariance matrix estimator is re-
stricted to be a linear combination of the sample covariance matrix
and the identity.

(LSMI beamformer): The loading factor is chosen to be 10σ2
n

which has been empirically shown to be a suitable value in [5].
(Traditional SMI): It is the traditional sample covariance matrix

inversion method.
In our proposed method, we replace I with 1

M
tr(R̂n,SCM)I in

(36) to properly scale ρ and simplify the search process. Since the
corrected noise covariance matrix is a linear combination of R̂n,SCM

and I with weights 1 and ρ, respectively, it is better to make R̂n,SCM

and I in similar scale (which could differ a lot due to different trans-
mitting SNR).

Our experiments is conducted 200 times and the average is com-
pared.

We plot the output SNR versus the number of training samples
in Fig. 1. It can be seen that the output SNR of the clairvoyant is
constant, since this method does not depend on the samples. The
performance of our proposed beamformer is very close to that of op-
timal diagonal loading method, even when the sample size is small,
the proposed method dominates the LSMI beamformer and the tra-
ditional SMI method. When N becomes larger and larger, the per-
formance of the SMI method becomes better. The performance of
LSMI does not change much, since it exploits a fixed and large di-
agonal loading factor. We plot the output SNR versus transmitting
SNR in Fig. 2. It can be seen that the performance of our proposed
beamformer is very close to that of optimal diagonal loading method
under all transmitting SNRs. When transmitting SNR is low, the dif-
ference of our proposed beamformer is larger because of the error in
estimating the steering vector. Moreover, in this scenario, our pro-
posed method outperforms LSMI by approximately 2dB and SMI by
nearly 3dB.
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Fig. 1. Output SNR: transmitting SNR is 0 dB, M = 20, N varies
from 5 to 100
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Fig. 2. Output SNR: M = 20, N = 30, transmitting SNR varies
from −10 dB to 10dB

6. CONCLUSION

In this paper we have provided an MV beamformer with diagonal
loading, which is robust against the imprecise steering vector and the
insufficiency of the samples. We have employed high-dimensional
asymptotics to reflect the fact that the number of samples is compa-
rable to the array dimension, and estimate the optimal loading fac-
tor based on random matrix theory. Monte Carlo simulations have
shown the competitive advantage of our proposed method under re-
alistic finite sample-size settings.
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