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ABSTRACT

This paper proposes the first content identification (ID) sys-
tem for depth video as well as a first hybrid content ID system
for synchronized RGB and depth (RGB-D) video. The pro-
posed systems are tested on a public RGB-D dataset. The hy-
brid system demonstrates significant performance gains over
RGB-alone or depth-alone systems, while depth and RGB
perform comparably. Moreover, a statistical interpretation of
the hybrid system’s superior performance is provided.

Index Terms— Content identification, fingerprinting,
Kinect camera, depth video

1. INTRODUCTION

As people continuously search for better technologies to
protect, manage and retrieval video content, content identi-
fication (ID) has received considerable attention from both
academia and industry. Different from watermarking, which
inserts an identifier into the the video content and thus
changes the content, content ID extracts a signature (fin-
gerprint) from the video content without changing it. A video
fingerprint is a short summary of the video content that is
robust to content-preserving distortions. The goal is then to
match any query video to a database video by measuring the
distance between the query fingerprint and the fingerprints
in the database. Content ID can be used for filtering on file-
sharing websites such as YouTube, advertisement tracking,
broadcast monitoring, and law enforcement [1].

Many RGB video fingerprinting algorithms have been
proposed and have demonstrated good performance [1]. De-
spite promising results, video content ID systems still face the
limitation that video frames are 2-D projections of the 3-D
world and depth information is lost. Fortunately, advances
in sensing technology have now made it possible to equip
videos with depth information. In particular, Xbox Kinect
cameras are inexpensive (∼ $150) and output both RGB and
depth videos as illustrated in Fig, 1 [2]. Kinect was originally
designed for gaming, but soon found applications to various
research problems in Signal Processing, Computer Vision,
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Robotic Navigation, and Computer Graphics. The applica-
tion of Kinect to real-time human pose recognition won the
best paper at the top computer vision conference CVPR [3]
in 2011. We expect that RGB+depth (RGB-D) videos will
become widespread in the future, and that databases such
as [4, 5, 6, 7] will be commonplace. Since the combination
of RGB and depth information is intrinsically more suitable
than RGB alone or depth alone for representing scene con-
tent, the central goal of this paper is to investigate how depth
information can help identify query videos. To the best of our
knowledge, no depth content ID system currently exists.

(a) (b)

Fig. 1. A RGB-D video frame from the NYU depth V2 dataset: (a)
RGB image; (b) depth image. The combination of both modalities
is referred to as RGB-D.

Notation: we follow the convention that uppercase letters
represent random variables while lowercase letters represent
particular realizations of these random variables. A vector is
denoted by an underscore (e.g., f ) and a temporal sequence
by a boldface letter (e.g., f).

2. OVERVIEW OF A CONTENT ID SYSTEM

Fig. 2. Overview of a video content ID system

Fig. 2 shows a general content ID system applicable to
most signal modalities, including RGB and depth video. The
fingerprint database is built offline by extracting fingerprints
from all reference signals. When a query signal (video) comes
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in, its fingerprint is extracted and used as a query to the fin-
gerprint database.

A key component of any content ID system is the finger-
print extraction algorithm which relies on signal processing
primitives. In particular, learning algorithms that employ a
variation of Adaboost to select filters and quantizers, such as
Symmetric Pairwise Boosting (SPB) [8, 9] and regularized
Adaboost [10], have demonstrated excellent content ID per-
formance. The general framework is shown in Fig. 3 and is
adopted in this paper.

Fig. 3. Fingerprint Extraction Algorithm

The decoding metric in most content ID systems measures
distance between fingerprints [8, 9, 11, 12]. If the distance is
less than a predefined decision threshold τ , the fingerprint is
declared as a match for the query. This is a variable-size list
decoder: the number of matches could be 0, 1, 2 or more. Al-
ternatively a single-output decoder might be used, returning
only the index of the closest match. In this paper, Hamming
distance metric with a list decoder is used in the experiments.

3. A DEPTH CONTENT ID SYSTEM
3.1. Depth Features
It can be difficult to extract good (i.e., robust and discrimina-
tive) fingerprints directly from raw video clips because of the
difficulties of working with high dimensional data. In most
video content ID systems, dimensionality reduction is applied
before fingerprint extraction. We call the output of this step
intermediate features.

Ideally, intermediate features should be sufficient statis-
tics for the identification problem. It is unlikely any nontriv-
ial such feature exists, and moreover the probability distribu-
tion of video data is not accurately known. Therefore, many
heuristic RGB video features have been proposed and eval-
uated on some large datasets. This includes spatial features
based on intensity change of a single image frame, tempo-
ral features based on a sequence of consecutive frames, color
features computed in some color space, transformed domain
features such as wavelet transform coefficients, or a combina-
tion of different types of features. The paper [1] provides an
excellent review of RGB video features for content ID.

As Fig. 1 illustrates, depth images contain more homo-
geneous patches and fewer localized features, such as lines,
edges and corners, than RGB images. If the intermediate fea-
ture x ∈ X consists of averages of homogeneous spatiotem-
poral patches of a depth video segment, x is approximately
a sufficient statistic for the depth video segment. In practice,

determining the number of homogeneous patches and their
locations can be difficult and time consuming, and thus we
propose the block mean depth (BMD) as intermediate fea-
tures for depth video. First, each depth frame is divided into
Nr×Nc blocks (Nr rows and Nc columns). The intermediate
feature x at block Br,c,t in the r-th row, c-th column and t-th
(1 ≤ t ≤ T ) frame of a depth video segment is calculated as

x(r, c, t) =
1

|Br,c,t|
∑

(i,j)∈Br,c,t

d(i, j, t), (1)

where | · | denotes set cardinality, and d(i, j, t) is the depth
value at coordinates (i, j) in the t-th frame. Hence, the fea-
ture space X = RNr×Nc×T . The averaging operation in
the BMD feature makes it ralatively robust to the acquisition
noise in depth frames. Another motivation is that block mean
luminance (BML), the counterpart of BMD for RGB video,
has demonstrated excellent robustness to lossy compression,
frame resizing and frame rate change in [9]. We have ob-
served the same nearly perfect performance of BMD for depth
video, and thus we have considered more challenging degra-
dations such as cropping and rotation in our experiments to
test BMD’s robustness and discriminative power.

3.2. Filter and Quantizer Selection
Based on the extracted intermediate features, the filter and
quantizer selection algorithms symmetric pairwise boosting
(SPB) [9] and regularized Adaboost [10] operate as follows.
A training set T , {(xt, yt, zt) ∈ X 2×{±1}, t ∈ T } is com-
prised of a subset T+ of |T |/2 matching pairs and a subset T−
of |T |/2 nonmatching pairs, where a pair (xt, yt) ∈ X 2 is
said to be matching if the second signal is a distorted version
of the first, and nonmatching if the two signals are indepen-
dent. The binary variable (label) zt is equal to 1 (resp. -1) if
(xt, yt) is matching (resp. nonmatching). Define a set of J
weak classifiers hj : X 2 → {±1}, 1 ≤ j ≤ J , as

hj(x, y) =

{
+1 if ϕj(x) = ϕj(y)
−1 otherwise (2)

where ϕj(x) = Qj(λj(x)) is parameterized by a filter λj :
X → R and a quantizer Qj : R → A. Denote by H the
class of feasible classifiers (indexed by the choice of filters
and quantizers).

Fig. 4. 3-D Haar-like filters [9]: (a) spatio-temporal average,
(b) temporal difference, (c,d) spatial difference, and (e,f) spatio-
temporal difference.

A popular family of filters is the Haar-like filters used in
[8, 9, 13] which are easy to compute and rich enough to de-
scribe perceptually significant visual features. The filter out-
puts for the 3-D Haar-like filters in [9] are the average differ-
ence between values in light and dark regions shown in Fig. 4.
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To reduce the computational complexity of the training, a lim-
ited number of candidate quantizers are evaluated.

The SPB algorithm is an adaptation of the well-known
Adaboost classification algorithm [9], while the regularized
Adaboost algorithm used a regularizer to effectively eliminate
those classifiers that generate highly correlated fingerprints
from the candidate pool H [10]. Upon completion of the al-
gorithm, both algorithms would output the boosted classifier
hB(x, y) , sgn

[∑
1≤j≤J αjhj(x, y)

]
, from which only the

filter λj and quantizer Qj associated with each hj are used to
produce the fingerprints.

Given a video signal x = x1, . . . , xL ∈ XL consisting
of L video segments, the fingerprint is obtained as an array
f = {fij , 1 ≤ i ≤ L, 1 ≤ j ≤ J} where i denotes time and
j classifier index, and fij = ϕj(xi). We also use the notation
f = {fj , 1 ≤ j ≤ J} for the subfingerprint associated with a
given video segment.

4. RGB-D CONTENT ID SYSTEM
As illustrated in Fig. 1, most humans can reasonably infer
the depth information from the corresponding RGB image. A
mathematical algorithm has recently been developed to esti-
mate depth information from a single RGB image [14]. How-
ever, this kind of inference requires global image processing,
and local features such as block mean luminance (for RBG)
and block mean depth are more likely to be independent. Thus
we can build a hybrid system to harvest the diversity gain,
when both RGB and depth are available in video signals.

Fig. 5 illustrates our RGB-D fingerprint code design. We
train half of the filters and quantizers from RGB intermediate
features, and the other half from depth intermediate features.
Thus for each RGB-D video, half of the fingerprint is gener-
ated from RGB and half from depth. Then filtering and quan-
tization are applied, and the combined final fingerprint is used
to identify the video in the hybrid system.

Fig. 5. Fingerprint extraction for a hybrid system.

5. PERFORMANCE EVALUATION
5.1. Experimental Setup
The NYU Depth V2 dataset captures comprehensive indoor
environments and used in our experiments. It is comprised
of 464 indoor scenes taken from three cities. Each scene is
recorded as a short RGB-D video. We use 115 videos for

training and another 115 videos for testing. The training set
and testing set are randomly selected and contain a roughly
equal number of scenes from each scene type. The training
data includes 16,000 matching and 16,000 nonmatching pairs
(|T | = 32, 000) of sequences of intermediate features from 10
consecutive synchronized RGB and depth frames. The match-
ing pairs are generated from the video distortions illustrated in
Fig. 6: 50% cropping, vertical mirroring, frame rotation of 15
degrees and frame shifting downward and left by 100 pixels.
We consider geometric distortions only as they represent the
most challenging video distortions to detect. Both SPB and
regularized Adaboost work nearly perfectly for simple dis-
tortions such as lossy compression, resizing, and frame rate
change for both RGB [9, 10] and depth video. The nonmatch-
ing pairs are generated from intermediate feature sequences
extracted from different RGB-D videos.

We adopt the same video normalization as in [9]. Be-
fore extraction of intermediate features, both RGB and depth
videos are resampled at 10 frames per second, converted
to grayscale (RGB only) and resized to QVGA (320x240).
These preprocessing steps aim to make the fingerprinting
algorithm robust to frame rate change, color variation, and
frame resizing. After preprocessing, block mean luminance
(BML) and block mean depth (BMD) are extracted from
RGB and depth video clips on 36 (Nr = 4, Nc = 9) blocks
per frame. The temporal length of the intermediate features is
1 second, and the query length is 5 seconds with overlapping
factor of 9/10. We train J = 16 classifiers each for RGB
and depth. The first 8 classifiers from RGB and depth are
combined to generate hybrid fingerprints. Each filter output
is quantized into 4 levels. Hence our query fingerprint is 1312
bits long. For regularized Adaboost, we use a regularization
parameter [10] of γ = 0.2 for RGB and γ = 0.1 for depth.

Fig. 6. Sample distorted images. Top row: Original RGB and depth
images. Bottom two rows: Distorted RGB and depth images. Dis-
tortions from left to right are: cropping of 50%, vertical mirroring,
rotation of 15 degree and shift downward and left by 100 pixels.

5.2. Experimental Results
As shown in Fig. 7, the hybrid system outperforms the RGB-
alone and depth-alone systems for all the considered distor-
tions, irrespective of the fingerprinting algorithms used, while
RGB and depth perform comparably for cropping and shit-
ting. Moreover, regularized Adaboost performs significantly
better than SPB, irrespective of the modalities used. For the
image rotation distortion of Fig. 7g, hybrid system’s perfor-
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Fig. 7. First row: ROC curves for SPB under distortions: (a) cropping; (b) vertical mirroring; (c) rotation; (d) shift.
Second row: ROC curves for regularized Adaboost under distortions: (e) cropping; (f) vertical mirroring; (g) rotation; (h) shift.

mance gain is in orders of magnitude. Even more stunning
is the result for the distortion of vertical mirroring in Fig. 7f,
where false negative rate is zero for all possible values of false
positive rates based on a simulation of 25,073,193 nonmatch-
ing query pairs.

5.3. Statistical Interpretation
In general, the superiority of regularized Adaboost over SPB
stems from its ability to select more independent features
[10]. A similar phenomenon applies here, especially when
we consider RGB features and depth features.

We first define the within-modality correlation of two fil-
ters λj and λk (1 ≤ j, k ≤ J) as

Rm(j, k) =
E
[
(λm

j (Xm)− µm
j )(λm

k (Xm)− µm
k )

]
σm
j σm

k

, (3)

where m ∈ {RGB, D} denotes RGB and depth (D) respec-
tively, Xm is the intermediate feature of one segment from
the corresponding modality, µm

j and σm
j are the mean and

standard deviation of λm
j (Xm). We also define the between-

modality correlation

RRGB-D(j, k) =
E
[
(λRGB

j (XRGB)− µRGB
j )(λD

k (X
D)− µD

k )
]

σRGB
j σD

k

,

(4)
the average absolute within-modality correlation,

R
m

=
2

J2 − J

J−1∑
j=1

J∑
k=j+1

|Rm(j, k)|, (5)

and the average absolute between-modality correlation,

R
RGB-D

=
1

J2

J∑
j=1

J∑
k=1

|RRGB-D(j, k)|, (6)

of these filters. The expectations are estimated from the train-
ing dataset, and their values are shown in Table 1. The aver-
age between-modality correlation is almost an order of mag-
nitude smaller than the average within-modality correlation.

R
RGB

R
D

R
RGB-D

SPB 0.1496 0.1025 0.0208
Regularized Adaboost 0.2303 0.1705 0.0199

Table 1. Average within-modality and between-modality correla-
tions.

We also show in Fig. 8 the distributions of Hamming dis-
tance for matching and nonmatching pairs under the vertical
mirroring distortion (other distortions exhibit the same trend).
The better histogram separation of the second row is consis-
tent with regularized Adaboost’s superior content ID perfor-
mance in Fig. 7f over SPB in Fig. 7b. The clear improve-
ment in histogram separation from the left two columns (sin-
gle modality) to the last column (RGB-D) is consistent with
the better ROC curves of hybrid systems in Fig. 7b and Fig. 7f.
Overall, a hybrid system based on regularized Adaboost per-
forms significantly better than the other systems we consid-
ered.
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Fig. 8. Distributions of Hamming distance for matching and non-
matching pairs for the vertical mirroring distortion. First row from
left to right are SPB for: depth, RGB, and RGB-D. Second row from
left to right are regularized Adaboost for: depth, RGB, and RGB-D.
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