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ABSTRACT
During dyadic interactions, participants influence each other’s verbal
and nonverbal behaviors. In this paper, we examine the coordination
between a dyad’s body language behavior, such as body motion, pos-
ture and relative orientation, given the participants’ communication
goals, e.g., friendly or conflictive, in improvised interactions. We
further describe a Gaussian Mixture Model (GMM) based statistical
methodology for automatically generating body language of a lis-
tener from speech and gesture cues of a speaker. The experimental
results show that automatically generated body language trajecto-
ries generally follow the trends of observed trajectories, especially
for velocities of body and arms, and that the use of speech infor-
mation improves prediction performance. These results suggest that
there is a significant level of predictability of body language in the
examined goal-driven improvisations, which could be exploited for
interaction-driven and goal-driven body language generation.

Index Terms— body language generation, motion capture,
speech, dyadic interactions, communication goals

1. INTRODUCTION

The coordination of verbal and nonverbal human behavior during
interactions has been studied in many diverse areas including neuro-
science, engineering and psychology. Participants generally adjust
their behavior and give feedback, for example through facial expres-
sions, body movements and speech prosody, based on the behavior
of their interlocutors as well as their own communication goals. In
addition to understanding the fine details of human interaction mech-
anisms, modeling such behavior coordination is important for devel-
oping more natural human-machine interfaces.

Body language is an important element of nonverbal behavior
conveying attitudes and emotions in human communication, includ-
ing gestures, body postures, etc. In interactions, participants may
express body language differently depending on their communica-
tion goals and attitudes, leading to different coordination patterns of
a dyad’s body language. The goal of our work is two-fold: first to
examine how the body language of a listener and a speaker are re-
lated in an interaction given their communication goals (friendly or
conflictive); second to automatically generate a listener’s body lan-
guage from the body language and speech information of a speaker
in dyadic interaction settings of friendly or conflictive nature.

In this work, we use the multimodal USC CreativeIT database
that consists of goal-driven improvised interactions [1]. It contains
detailed full body Motion Capture (MoCap) data of both partici-
pants, providing a rich resource for studying and generating body
language. We extract various body language features including head

and body position, hand and body motion, and relative orientation.
The dyad’s body language correlations are analyzed using canonical
correlation analysis (CCA), for the interaction types of friendliness
and conflict. We observe that correlation patterns depend on the in-
teraction types, and also find statistically significant correlations that
empirically verify the dyad’s body language coordination.

Motivated by these analyses, we propose a method for automati-
cally predicting the listener’s body language using multimodal infor-
mation derived from the speaker, conditioning on the dyad’s commu-
nication goals. For this purpose, we use a Gaussian Mixture Model
(GMM) based approach that estimates a statistical mapping from
the speaker’s body language and speech cues to the listener’s body
language. Experimental results show that generated body language
trajectories generally follow the trends of observed trajectories, es-
pecially for velocities of body and arms, and that inclusion of speech
information generally improves performance. These results indicate
the existence of a significant level of predictability of body language
in the examined improvisations, which could be exploited towards
interaction-driven and goal-driven body language generation. The
generation of a subject’s body language based only on the interlocu-
tor’s multimodal information is a novel and unexplored research di-
rection. This direction could lead to the development of expressive
and goal-driven virtual agents that would display body language con-
sistent with their own communication attitudes, and in response to
the user’s audio-visual input.

2. RELATED WORK

The correlation between body language and speech features, has en-
abled much research progress in prosody-driven body gesture syn-
thesis. Busso et al. have proposed a prosody-driven approach for
synthesizing expressive rigid head motion [2, 3]. Mariooryad et
al. built a joint speech and facial gesture model to generate head and
eyebrow motion for conversational agents [4]. Likewise, Sargin et
al. synthesized head gestures from speech by exploring the joint cor-
relation between head gesture and prosody patterns [5]. Frameworks
for full body motion synthesis, in real time, that also use prosody
information, are developed in [6, 7]. While these works mainly fo-
cus on synthesizing body language of individuals, this paper aims at
interaction-driven body language generation in dyadic settings.

Chartrand et al. described that humans unconsciously mimic the
behavior of their interaction partners to achieve more effective and
pleasant interactions [8]. Ekman found that body language of in-
terviewees is distinctly different between friendly and hostile job
interviews [9]. Many engineering works are based on this mutual
influence of interlocutors. Morency et al. predicted head nods for
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virtual agents from the audio-visual information of a human speaker
based on sequential probabilistic models [10]. Researchers have also
used the emotional state of an interlocutor to inform that of a speaker
by modeling emotional dynamics between two participants [11, 12].
The influence model proposed in [13] models participants in conver-
sational settings as interacting Markov chains. Lee et al. proposed
prosody-based computational entrainment measures to assess the co-
ordination in married couples’ interactions [14].

In this work, we apply a GMM-based statistical mapping
methodology for body language generation, which was originally
proposed for articulatory to acoustic mapping [15] and spectral con-
version between speakers [16]. It has also been used for continuous
emotional state estimation based on body language and speech [17].

3. DATABASE DESCRIPTION

We use the CreativeIT database, which is a multimodal database of
dyadic theatrical improvisations [1]. It contains detailed full body
Motion Capture (MoCap) data of both participants (recorded at 60
fps), as shown in Fig. 1(a), and speech information. The interactions
are either improvisations of theatrical plays or theatrical exercises.
Here we examine the theatrical exercises, a simplified form of inter-
actions with restricted lexical content (only limited phrases can be
used), which encourages rich body language expressions. The in-
teractions were guided by a theater expert (professor/director), and
were performed following the Active Analysis improvisation tech-
nique [18]. According to this technique, the interactions are goal-
driven; actors have predefined goals that they try to achieve through
the appropriate use of body language and speech prosody. The goal
pair of each dyad defines the attitudes of the interlocutors towards
each other and the content of the interaction.

Our premise is that the dynamics of the interactions differ de-
pending on the participant’s goals. Hence, we group the interactions
into 3 cases: friendliness, medium conflict and high conflict, as de-
fined by the goal pairs. In friendly interactions both participants
have friendly goals, in medium conflict interactions one participant
is friendly while the other is creating conflict, and in high conflict
interactions both participants’ goals are conflictive. Interactions that
do not fit into these categories are excluded from our analysis. This
grouping is described in Table 1, along with examples of charac-
teristic goal pairs. Friendliness, medium and high conflict groups
contain 10, 30 and 8 interactions respectively, including 16 actors (8
female). Each interaction has an average length of 3 min and con-
tains on average 35 sentences per actor.

Table 1. Friendly, and Medium and High Conflict Cases
Cases Actors Example goal pairs

Friendly friendly - friendly to make peace - to comfort
Medium Conflict friendly - conflictive to convince - to reject

High Conflict conflictive - conflictive to accuse - to fight back

4. BODY LANGUAGE AND SPEECH FEATURES

The availability of full body MoCap information, as shown in
Fig. 1(a), enables us to extract detailed descriptions of each actor’s
body language. Our features, presented in Fig. 1(c), are motivated
from the psychology literature which indicates that body language
behaviors, such as looking at the other or turning away, approaching,
hand gesturing, etc, are informative of a subject’s attitude towards
his/her interlocutor [19]. While some of our features are informative
of a subject’s individual posture and motion, others describe relative

behaviors towards the interlocutor, e.g., body and head orientation,
approaching vs moving away, etc. The features are geometrical and
are computed in a straightforward manner by defining global and
local coordinate systems and by computing Euclidean distances and
relative positions, angles and velocities, as illustrated in Fig. 1(b)
(see [17] for more information). For example, if the cosine of the
face angle (cosFace) shown in Fig. 1(b) is close to 1, the actor
is looking towards the interlocutor, while cosFace < 0 indicates
looking away. Features marked with * in Fig. 1(c) are the target
features which will be analyzed and generated using the interlocu-
tor’s feature set. We also extract standard speech features from the
speaker’s sentences, i.e., pitch, energy and MFCCs.

5. ANALYSIS AND GENERATION SETUP

Our objective is to analyze how a listener’s body language is influ-
enced as a response to a speaker’s speech and body language. In
the friendliness and high conflict cases, both actors have the same
goal, therefore a friendly (conflictive) listener is analyzed (or gener-
ated) with respect to a friendly (conflictive) speaker. However, the
medium conflict case includes two subcategories for analysis and
generation: a friendly listener with respect to a conflictive speaker,
and a conflictive listener with respect to a friendly speaker.

Speech

Speaker

Listener

t

Full body language features

Representative frame

PCA

Target body language feature

window = 6 frames
t

t

(a)

0 10 20 30 40 50
0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

Time Lag ∆ t (frame)

C
a

n
o

n
ic

a
l C

o
rr

e
la

tio
n

(b)

Fig. 2. Canonical correlation analysis of the target body language
feature and source features. (a) Illustration of analysis window. (b)
Canonical correlation of the listener’s delayed cosLean with the
speaker’s body language features varying with time lag.

Our analysis and generation experiments are performed around
the sentences in an interaction. We split each interaction into seg-
ments according to the sentences, and for each sentence we extract
features for speakers and listeners (short segments are increased to
50 frames, by including frames surrounding the sentence). All the
extracted features are z-normalized into the same scale. Each target
feature of the listener at frame t is individually analyzed/generated
based on the speaker’s information during a window preceding
(including) frame t, as illustrated in Fig. 2(a). Specifically, the
speaker’s information consists of the speaker features at the repre-
sentative frame, which is the center frame of the window, concate-
nated with statistical functional information of the speaker features
over the window. We extract 11 statistical functionals for each
speaker body language feature, such as mean, standard deviation,
median, minimum, maximum, range, skewness, etc. The dimension-
ality is then reduced by Principal Component Analysis (PCA), by
keeping only the first 10 components (preserving about 90% of the
total variance). This functional information is included to provide
context of the body language around the representative frame. We
empirically determined a window size of 6 frames (0.1 sec), where
the representative frame is the third frame of the window.
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(a) Body Markers (b) Global and Local Positions, Face orientation angle

cosFace* Cosine of subject’s face angle towards Other (Fig 1(b))
cosBody* Cosine of subject’s body orientation angle towards Other
cosLean* Cosine of subject’s body leaning angle towards Other
px, py, pz Subject’s (x,y,z) coord. of body position (global, Fig 1(b))

absVbody* Absolute velocity of subject’s body
absVarmr,l* Absolute velocity of subject’s right/left arms
absVfeetr,l Absolute velocity of subject’s right/left feet
relVbody* Relative velocity of subject’s body towards Other
relVhandr,l Relative velocity of subject’s right/left hands towards Other
relVfeetr,l Relative velocity of subject’s right/left feet towards Other
rhandx,y,z Subject’s right hand (x,y,z) coord position (local, Fig 1(b))
lhandx,y,z Subject’s left hand (x,y,z) coord position (local, Fig 1(b))

dHands Distance between subject’s right and left hands

(c) Extracted Body Language Features

Fig. 1. Body Language Feature Extraction from MoCap. Features marked with * will be generated using the interlocutor’s feature set.

6. ANALYSIS OF THE DYAD’S BODY LANGUAGE

We perform Canonical Correlation Analysis (CCA) between each in-
dividual body language feature of the listener at frame t and the full
body language features of the speaker at the representative frame,
for each of the 3 cases of goal pairs in Table 1. In this experiment,
we do not include the speaker PCA information over the window,
to increase analysis interpretability. CCA finds two subspaces in
which the projections of two sets of data with different dimension-
alities are maximally correlated [20]. By examining the magnitude
of the canonical weight assigned to each normalized body language
feature, we can assess their contribution to the projection onto the
corresponding optimal subspace. In our case, the speaker’s body
language features with larger magnitudes of weights are more in-
formative regarding the target body language feature of the listener.
Hence, we select a subset of informative body language features for
each target feature based on this analysis. These selected features
will be later used for body language generation in Section 7.

Overall, we notice that the selected features differ for each case
of goal pairs, suggesting different coordination patterns for differ-
ent interaction types. Specifically, for friendly situations we select
many hand position features, suggesting the expressiveness of hand
gestures in these interactions. In contrast, many relative and abso-
lute velocities, and face orientation features are found informative in
medium and high conflict cases, indicating more body motion and
approach-avoidance behaviors. For example, Table 2 presents the
top-5 selected speaker features for the listener’s target features in the
medium conflict case (conflictive speaker, friendly listener).

Table 2. Top-5 selected features in medium conflict case (conflictive
speaker, friendly listener). Minus sign indicates a negative relation.

Target Listener Feat. Selected Speaker Features (top-5)

cosBody relVbody (−), cosFace, absVfeetl (−), absVfeetr (−), rhandz
cosLean cosLean (−), dHands, pz, rhandx (−), absVbody (−)
cosFace cosFace (−), absVarmr, relVhandl, rhandz (−), absVbody (−)

absVbody absVbody, lhandx (−), absVarmr, dHands (−), lhandy
absVarmr absVarmr, absVbody, lhandx (−), absVarml, relVhandl (−)
relVbody relVbody, cosBody, rhandz, lhandx (−), cosFace (−)

In addition, we conduct CCA between each individual target
body language feature of the listener and the full body language
features of the speaker, including the speaker PCA information this
time. CCA is performed both separately for the 3 cases of goal pairs,
and by considering all cases together. Analysis results show that
canonical correlations for each case separately are higher than those
over all cases, which reinforces our hypothesis that conditioning on

the goal-pairs reduces some of the dyad’s coordination variability
and helps us focus on body language coordination patterns that are
related to the dyad’s communication goals. Furthermore, canoni-
cal correlation for each target body language feature in each case is
greater than 0.50 (p < 0.01), implying statistically significant coor-
dination of the dyad’s body language in communication.

During an interaction, one person’s movement in the recent past
may still influence the interlocutor’s movement at current time. To
investigate the effect of this reaction lag, we delay the target frame by
certain time lag ∆t (see Fig. 2(a)) and examine how the correlation
of a dyad’s body language varies in terms of ∆t. Results show that
the correlation generally decreases with increasing time lag. For in-
stance, Fig. 2(b) shows the correlation between a listener’s delayed
cosine of leaning angle (cosLean) and a speaker’s body language
features with varying ∆t in the friendliness case.

7. BODY LANGUAGE GENERATION

The coordination of a dyad’s body language implies a certain level
of predictability of body language in our goal-driven interactions,
hence it is possible to generate a listener’s body language based on
the speaker’s audio-visual information. For body language gener-
ation, we apply a GMM-based approach that estimates an optimal
statistical mapping, using Maximum Likelihood Estimation (MLE),
from a set of observed continuous random variables, here a speaker’s
audio-visual features, to a target continuous variable, here a listener’s
body language feature. This method was originally presented for the
problem of articulatory to acoustic mapping [15].

Let xt be the listener’s target body language feature and yt

be the speaker’s feature vector at time t. We train a GMM to
model the joint distribution of xt and yt: P (xt,yt|λ(x,y)) =∑M

m=1 amN(xt,yt;µ
(x,y)
m ,Σ

(x,y)
m ), where am, µ(x,y)

m and Σ
(x,y)
m

are the weights, means and covariance matrices of the m-th compo-
nent. The conditional distribution of the target feature xt given the
observation yt is also represented as a GMM:

P (xt|yt, λ
(x,y)) =

M∑
m=1

P (m|yt, λ
(x,y))P (xt|yt,m, λ

(x,y)),

where P (xt|yt,m, λ
(x,y)) is the conditional distribution of the

m-th component and P (m|yt, λ
(x,y)) is the so-called occupancy

probability. For each test recording, we estimate the target feature
given the observed features by maximizing the conditional probabil-
ity model: x̂t = arg maxxt P (xt|yt, λ

(x,y)). The maximization is
done through the EM procedure with minimum mean squared error
(MMSE) estimate as the initial value [15]. To incorporate dynamic
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Table 3. Median correlation between generated and observed values of the target features of the listener.
cosBody cosLean cosFace absVbody absVarmr relVbody cosBody cosLean cosFace absVbody absVarmr relVbody

Friendly (Friendly Speaker, Friendly Listener) Medium Conflict (Friendly Speaker, Conflictive Listener)

Body 0.27 0.26 0.18 0.44 0.43 0.45 0.29 0.20 0.30 0.49 0.52 0.41
Speech + Body 0.42 0.28 0.24 0.49 0.48 0.54 0.41 0.24 0.32 0.58 0.56 0.48

High conflict (Conflictive Speaker, Conflictive Listener) Medium Conflict (Conflictive Speaker, Friendly Listener)
Body 0.09 0.07 0.07 0.48 0.37 0.28 0.10 0.21 0.13 0.55 0.53 0.53

Speech + Body 0.18 0.15 0.18 0.51 0.54 0.35 0.24 0.23 0.20 0.57 0.56 0.51

0 100 200 300 400 500 600
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Frame

co
sB

od
y

 

 

Ground Truth

Estimate (body) Corr = 0.51

Estimate (body + speech) Corr = 0.58

(a) Med. conflict interaction (conflictive listener).
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(b) Med. conflict interaction (friendly listener).
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(c) Friendly interaction.

Fig. 3. Examples of generated body language curves using MLE mapping from visual and from audio-visual information.

information, we augment xt and yt with corresponding derivative
estimates [15]. By using the information from the neighborhood,
this approach allows us to exploit the continuous nature of our ob-
servation and target features, and provides us with relatively smooth
trajectory estimates of the listener’s body language.

We use an implementation of this mapping developed for [17]
and available in [21]. Our experiment setup follows Section 5.
GMMs are trained using the listener’s body language feature xt and
the speaker’s feature vector yt. Specifically yt contains the top-
10 selected body language features of the representative frame, plus
PCA information extracted from the window, as described in Section
5. We first train a visual GMM based on xt and the visual vector yt.
When including speech information, yt contains the top-10 body
language and top-5 speech features, along with the PCA coefficients
(the top speech features are derived through CCA, similarly to the
body language features). We then train an audio-visual GMM based
on xt and the audio-visual vector yt. In the generation stage, body
language of the listener is generated either from body language of
the speaker, using the visual only GMM, or from body language
and speech of the speaker, using the audio-visual GMM. For the
increased body language frames surrounding a sentence, which do
not contain speech (see Section 5), we use the visual GMM.

8. EXPERIMENTS AND RESULTS

In our experiments, we use 4-fold cross validation by randomly leav-
ing interactions out for each target body language feature in each
interaction condition respectively. On average, we use about 25000
frames for training and 8300 frames for testing. We are mostly in-
terested in capturing the shape/trends of body language trajectories
rather than their exact values. Hence, to evaluate the quality of body
language generation, we use Pearson’s correlation between predicted
and observed values of the body language feature over an interaction.

Table 3 presents the median correlations of generated and ob-
served values of target body language features, when using just body
language features and when using both body language and speech
features. We can observe that generated body language is positively
correlated with the observed values (p < 0.01). In particular, veloc-
ities of body and arms are better generated compared to orientations
of body and face in each case. Moreover, the performance on orien-

tations of body and face is better in the cases of friendly speakers. In
addition, inclusion of speech information generally improves gener-
ation performance of body language features. For example, speech
cues improve the correlation between the MLE estimate and ground
truth of the right arm absolute velocity (absV armr) in the high con-
flict case. These results suggest that there is a significant level of
predictability of body language in our goal-driven improvisations.

In Fig. 3, we present example curves of generated body language
features from body language only and from both body language and
speech. Since we generate body language for each sentence segment,
the estimated trajectories for an interaction are discontinuous and the
vertical dotted lines indicate boundaries between sentences. We can
observe that our generated body language curves from both visual
cues and audio-visual cues generally capture the trends of the ob-
served curves, especially for velocities of body and arms, although
the exact values of generated and observed body language are dif-
ferent in some cases. We also notice differences in the dynamics
of different body language features, e.g., body orientation changes
slower compared to velocities, an issue that potentially requires fur-
ther investigation and modeling.

9. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an analysis of the coordination between
the body language of dyads in improvised interactions with various
levels of interaction conflict, as defined by the dyad’s communica-
tion goals. We also used a GMM-based statistical methodology for
generating the body language of a listener in an interaction from
multimodal cues of a speaker given their communication goals. The
experimental results suggest a significant level of predictability of
body language in the examined goal-driven improvisations, which
can be exploited for body language generation.

In the future, it would be interesting to examine to what extent
this methodology generalizes in less constrained interactions. We
would also like to combine this work with more traditional genera-
tion approaches that are based on discrete body language units, e.g.,
[6]. Our long-term goal is to work towards interaction-driven and
goal-driven body language synthesis, e.g., creating virtual characters
with specific communication goals which would display expressive
body language in response to the user’s audio-visual information.
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