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ABSTRACT

Dynamic recognition of gestures from video sequences is a
challenging task due to the high variability in the character-
istics of each gesture with respect to different individuals.
In this work, we propose a novel representation of gestures
as linear combinations of the elements of an overcomplete
dictionary, based on the emerging theory of sparse represen-
tations. We evaluate our approach on a publicly available
gesture dataset of Palm Grafti Digits and compare it with
other state-of-the-art methods, such as Hidden Markov Mod-
els, Dynamic Time Warping and the recently proposed dis-
tance metric termed Move-Split-Merge. Our experimental re-
sults suggest that the proposed recognition scheme offers high
recognition accuracy in isolated gesture recognition and a sat-
isfying robustness to noisy data, thus indicating that sparse
representations can be successfully applied in the field of ges-
ture recognition.

Index Terms— gesture recognition, sparse representa-
tions, compressive sensing

1. INTRODUCTION

Gesture recognition is an active research area in the Computer
Vision community, with applications in Human-Computer In-
teraction (HCI), sign language recognition and remote control
of electronic devices. The release of mass consumer applica-
tions and devices, including gesture-controlled interactive TV
systems (iDTV) and Microsoft’s Kinect TMsystem, has fuelled
the interest in gesture recognition technology.

Currently, there is a variety of models for representing
gestures, with quite promising results [1]. Some of the most
successfull include Hidden Markov Models (HMMs) [2] [3],
Dynamic Time Warping (DTW) [4] [5], Conditional Ran-
dom Fields (CRFs) [6] [7] and Dynamic Bayesian Networks
(DBNs) [8]. Recently, some new approaches based on the
emerging field of sparse representations and Compressive
Sensing have also been proposed [10].

This research was partly funded by the PEOPLE-IAPP AVID-MODE
and CS-ORION grants, within the 7th European Community Framework Pro-
gram.

In this work, we focus on dynamic hand gestures, i.e.
gestures where information lies in the trajectory of the hand
palm. We represent gestures as sequences of hand coordi-
nates on the image plane and formulate the recognition pro-
cess as an instance of the sparse representation-based Classi-
fier (SRC) [11]. Based on this formulation, class information
is extracted by matching the sequence in an overcomplete dic-
tionary of training examples. Experimental results on a pub-
licly available dataset [4] suggest that the proposed system is
able to achieve high recognition accuracy under challenging
conditions.

In short, the novelty of our work is two-fold. First, we pro-
pose a gesture recognition algorithm that can achieve state-of-
the-art performance in an efficient and robust way. This goal
is achieved by leveraging the classification power of sparse
representations for time series analysis. Second, the proposed
scheme focuses on the combination of a strong classifier with
a lightweight feature extraction, as opposed to more elaborate
and time consuming feature extraction methods, thus offering
greater design flexibility and more reasonable computational
requirements.

The rest of this work is organized as follows: In Section
2 we review some related approaches for action recognition
and sparse representations. In Section 3 we briefly present
HMMs, DTW and MSM [12], which are used for comparison
with our approach. In Section 4 we present our approach in
detail and in Section 5 we present the experimental results.
Finally, Section 6 concludes this work and addresses our plans
for future work.

2. RELATED WORK

Our work is closely related to approaches that utilize the
theory of sparse representations and overcomplete dictionar-
ies for recognition purposes. According to this modelling
paradigm, that was first introduced by Wright et al. [11] in
the context of face recognition, a test signal can be repre-
sented as a linear combination of a few training examples
from the same class. The notion of sparsity in the represen-
tation is mathematically formulated as a constrained least
squares problem where the solution can be found by solving
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an `0– or `1–minimization problem. The sparse representa-
tion framework was subsequently applied to other problems
in addition to face recognition including generic human ac-
tion recognition [13] [14] or unusual event detection in video
sequences [15].

The work of Akl et al. [10] is the closest to our work.
In that work, sparse representation of the hand coordinates in
3-D was used and an overcomplete dictionary was built, per-
forming gesture recognition in a way similar to [11]. In our
work, we follow a similar approach, but we use a different sig-
nal representation based on signal resampling. The proposed
resampling mechanism addresses one of the main challenges
in gesture recognition, the variability of duration between dif-
ferent gestures and different users, as well as different video
frame rates. Furthermore, we restrict ourselves to the (x, y)
hand coordinates, as acquired by a typical 2D vision-based
hand detection mechanism, instead of (x, y, z), as acquired
by a 3-axis accelerometer.

3. A BRIEF OVERVIEW OF HMMS, DTW AND MSM

In this work we address the issues of dynamic hand gesture
recognition by posing the problem as time series classifica-
tion, since information is encoded as a sequence of hand co-
ordinates in time. One of the key challenges in classifying
time series lies in the variability of each recorded signal with
respect to its duration. In the context of gesture recognition,
this phenomenon is illustrated by the different length of time
that each individual takes to the perform a specific sequence.
This variability is evident even when the same individual per-
forms an action repeatedly. We discuss the state-of-the-art
methods in time series classification next.

3.1. Hidden Markov Models

A Hidden Markov Model (HMM) [16] is a directed proba-
bilistic graphical model that expresses the values of a time
series by a set of hidden (unobservable) states of the learnt
model. The three fundamental problems of HMMs are Eval-
uation, Decoding and Training and are commonly solved by
the Forward [16], Viterbi [17] and Baum-Welch [18] algo-
rithms, respectively. The key parameter of a HMM is the
number of states that will be used for each model. Recog-
nition is based on identifying the maximum likelihood path
of states that generated the sequence of observations under
testing (e.g. a gesture) from all available classes. For our
experiments we used a Left-Right (Bakis) HMM and chose
the best number of states for each class, after thorough cross-
validation.

3.2. Dynamic Time Warping

Dynamic Time Warping (DTW) [19] utilizes Dynamic Pro-
gramming in order to recursively compute the alignment and

the corresponding distance between two time series. Since
DTW is an exemplar, i.e. non–parametric, method, it typi-
cally requires little or even no training, in contrast to HMMs,
that require extensive training, but is much slower during
the recognition step, since all training examples have to be
checked. For this reason, a model version of DTW is com-
monly used in recent approaches, such as [4].

3.3. Move-Split-Merge metric

The Move-Split-Merge (MSM) metric is proposed in [12]
by Stefan et al.. It computes the distance between two
time series, a and b, by using three fundamental operations,
namely Move, Split and Merge, in order to transform a to b.
MSM’s advantage compared to DTW is metricity, which al-
lows MSM to be further combined with a number of methods
for indexing, clustering and visualization, designed for metric
spaces. MSM’s free parameter is the cost c of every Split and
Merge operation. For our experiments we chose c = 100
since it resulted in the highest performance out of the values
{0.01, 0.1, 1, 10, 100}.

4. PROPOSED GESTURE RECOGNITION
TECHNIQUE

4.1. Gesture representation

For each of the training video segments, we assume a reliable
hand detection preprocessing step, which extracts the (x, y)
hand coordinates at each frame t = 1, . . . , T , resulting in two
1D signals, x = [x(1), . . . , x(T )] and y = [y(1), . . . , y(T )]. In
order to achieve translation invariance (and some robustness
to noise), we subtract the mean values (x̄, ȳ) from the original
observations, thus forming the signal vectors xinv = [x(1) −
x̄, . . . , x(T ) − x̄] and yinv = [y(1) − ȳ, . . . , y(T ) − ȳ].

Since different gestures –or even different instances of the
same gesture– generally have different duration (as measured
in frames), we apply resampling through linear interpolation
of (xinv, yinv) in order to obtain signal vectors (ẋ, ẏ) of fixed
length N , where N is chosen as a parameter. Then we form
a single 1D signal v of length 2N by interleaving (ẋ, ẏ), such
that v = [ẋ(1), ẏ(1), . . . , ẋ(N), ẏ(N)].

Finally we arrange the training sequences as columns of a
matrixD, such thatD = [v1,1, . . . , v1,m1

, . . . vC,1, . . . vC,mC
],

where C denotes the number of different gesture classes,
mi, i = 1, . . . C is the number of training examples for each
class i and vi,j is the j-th example of the i-th class.

4.2. Gesture Recognition

For each new test video sequence, we apply the above process
in order to obtain the corresponding 1D signal vtest. We then
compute the sparse representation s of vtest over the dictio-
nary D, by solving the following optimization problem:
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ŝ = arg min ‖s‖0 subject to vtest = Ds (1)

The main assumption is that if vtest belongs to class c ∈
{1, . . . , C}, it will approximately lie in the linear span of the
training examples from the same class c [11]. However, in
practice, non-zero coefficients may result for other classes
too. Sparse Representation-based Classifier (SRC) [11] re-
solves the ambiguity by minimizing the reconstruction error
(or residual error) rc(vtest) based only on the coefficients
s̃c of a certain class c, i.e. ĉ = argmin

c∈C
rc(vtest), where

rc(vtest) = ‖vtest − Ds̃c‖2 and s̃c is a masked version of s
with zeros everywhere except for the entries associated with
class c.

Since the `0–minimization problem (1) is generally NP-
complete, in practice, one can use greedy algorithms, such as
the Orthogonal Matching Pursuit (OMP) [20], which solves
the following optimization problem:

ŝ = arg min ‖vtest −Ds‖2 subject to ‖s‖0 ≤ T0 (2)

where s is generally referred as the coefficient vector and T0
is a constraint to the number of the non-zero elements of s (we
used T0 = 2). An alternative approach is to solve a convex
relaxation of (1), also known as noisy Basis Pursuit (BP) [21]:

ŝ = arg min ‖s‖1 subject to ‖vtest −Ds‖2 ≤ ε (3)

where ε is the accuracy tolerant allowed to the solution ŝ (we
used ε = 0.001).

For our experiments we used and compared both algo-
rithms and refer to them as SRC-BP and SRC-OMP. The
“SparseLab” package [22] and the OMP-Box [23] provide
efficient Matlab implementations for the BP and the OMP
algorithms, respectively.

Fig. 1. Typical frames from the 10 Palm Grafti Digits dataset
of [4]. User wears a green glove and gestures the 10 digits
such that recognition is possible only by the trajectory of the
moving hand.

5. EXPERIMENTAL RESULTS

5.1. Experimental Setup

For our experiments we used the 10 Palm Grafti Digits dataset
of [4], corresponding to the 10 arabic numerals 0 − 9. The
dataset is split in three subsets, namely the ”Training”, ”Easy”

and ”Hard” sets. For our purposes we chose to use the ”Train-
ing” set, in which the users wear a green glove, in order to
facilitate the process of data acquisition. The dataset contains
data from 10 users and each user performs each gesture three
time in each video clips, resulting in a total of 30 examples
for each gesture. Some representative frames can be seen in
Figure 1. In this work, the center of gravity of the gesturing
hand is selected as a representative feature in each frame.
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Fig. 2. Recognition accuracy of our approach as a function of
the resampling parameter N.

In order to measure the recognition accuracy of both our
approach and the three alternative approaches, we ran exper-
iments in a leave-K-out cross-validation manner. In each
round we considered K users (i.e. M = 3K examples) as
the training set and 10−K users (i.e. M = 3(10−K) exam-
ples) as the validation set, while the final results correspond
to the averaged accuracies.
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Fig. 3. Recognition accuracy of our approach as a function
of the number of training examples for various values of the
resampling parameter N.

5.2. Effect of resampling parameter N

The main parameter of our approach is the length N of the
resampled sequence. As discussed in Section 4.1, this step
is necessary in order to build the gesture dictionary. In our
experiments we varied the value of this parameter in a wide
range of values ([1, 120]). Our results for K = 9 users used
as training set are shown in Figure 2, both for OMP and BP.
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As it can be seen, our approach achieves high perfor-
mance results even for really low values of N . More pre-
cisely, we observe that for N ∈ [3, 40], BP achieves high
accuracy, reaching 100%, while it starts diminishing slowly
for N > 40. However, OMP presents an extremely stable be-
haviour and is not affected by N . In Figure 3 we confirm the
same behaviour as we vary the number of training examples,
M . OMP version is almost not affected at all by the choice
of N and M , while BP is much less robust.

To our opinion, this is a very important result, since OMP
is much more computationally efficient compared to BP. A
further investigation of this issue is included in our goals for
future work.
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Fig. 4. Recognition accuracy of our approach and three other
common methods as a function of the number of training ex-
amples (expressed as percentage of the total 27 examples).

5.3. Comparison with HMMs, DTW and MSM

We also ran experiments with the other three approaches,
namely HMMs, DTW and MSM, in order to compare the
results of our approach. Our main goal is to show that our
approach produces good or even better results compared to
the state–of–the–art. Comparison is based on the recognition
accuracy as a function of the number of training examples.
Our experimental results are shown in Figure 4. We should
note that we present only the best results achieved by the
other three methods (after thorough cross validation).

We observe that all four methods produce quite high re-
sults, while our approach outperforms the other three, achiev-
ing 100% accuracy even for 3 training examples (i.e. 1 user).
We also observe that DTW produces the second best re-
sult, followed by MSM. HMMs show the worst performance
among the methods presented, a result that is not surprising,
given that this method typically requires a lot of training data.
To our knowledge, the behaviour of DTW for few training
examples has not been investigated so far.

5.4. Performance with noisy data

Since all of our current experiments are run in a dataset where
the user wears a green glove, one can argue that the time se-
ries data we use is not fully representative of real–world data,

obtained through real–time processing of video frames. Al-
though our main goal is to demonstrate the recognition per-
formance of our approach, we would like to provide a hint
about the possible performance reduction due to noisy data.
For this reason, we measured again the accuracy of all four
methods, under the presence of additive white Gaussian noise
N (0, σ2) in our raw palm coordinate data (x, y). Figure 5
presents our results for K = 9 users.

Since HMMs performed very poorly, showing recognition
rates as low as 30% for SNR < 24dB, we opted to com-
pare the remaining methods for clarity. We observe that SRC-
OMP, DTW and MSM present a very robust behaviour, with
SRC-OMP providing the best results, even in the presence of
very high noise (e.g. SNR = 20dB). Good performance of
SR-based methods under high-noise conditions has also been
confirmed in speech recognition too [9].
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Fig. 5. Recognition accuracy of our approach in noisy data as
a function of SNR.

6. CONCLUSION

In this work we proposed a new approach for gesture recog-
nition based on sparse representations and an overcomplete
gesture dictionary. Our experimental results show that our
approach is meaningful and at least as accurate and robust as
other commonly used (HMMs, DTW) or recently proposed
(MSM) frameworks.

While our approach outperforms the other three ap-
proaches, it is worth saying that our primary goal is to
demonstrate its competitive performance in gesture recog-
nition tasks and not claim it to be a fundamentally better
method. As it is also stated in [12], we should never for-
get that all these methods are valuable and the above results
might be much different in a different dataset.

Our plans for future work include the evaluation of our ap-
proach in datasets without the limitations of the green glove,
as well as the development of a framework for online gesture
spotting instead of isolated gesture recognition, a problem in
which HMMs and DTW present state-of-the-art results.
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