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ABSTRACT

We derive an optimization framework for computing a view selec-

tion policy for streaming multi-view content over a bandwidth con-

strained channel. The optimization allows us to determine the de-

cisions of sending the packetized data such that the end-to-end re-

construction quality of the content is maximized, for the given band-

width resources. Two prospective multi-view content representation

formats are considered: MVC and video plus depth. For each, we

formulate directed graph models that characterize the interdependen-

cies between the data units comprising the content. For the video

plus depth format, we develop a spatial error concealment strategy

that reconstructs missing content at the client based on received data

from other views. We design multiple techniques to solve the op-

timization problem of interest either exactly or approximatively, at

lower complexity. In conjunction, we derive a spatial model of the

reconstruction error for the multi-view content that we employ to re-

duce the computational requirements of the optimization. We study

the performance of our framework via simulation experiments. Sig-

nificant gains in terms of rate-distortion efficiency are observed over

a content-agnostic reference technique.

1. INTRODUCTION

Multimedia applications that exploit content captured simultaneously

via multiple cameras are increasingly becoming popular. They in-

clude 3D and free-view point TV, immersive teleconferencing, vir-

tual worlds and gaming, and many others. To date, a considerable

effort has been placed into investigating efficient methods for repre-

sentation and rendering of multi-camera signals. However, the de-

velopment of corresponding transmission strategies for multi-view

content delivery has been notably missing.

The present paper aims at addressing the above dichotomy by

developing an optimization framework for transmission policy se-

lection of multi-camera video signals. We consider computing view

transmission decisions such that the end-to-end multi-view recon-

struction quality is maximized for the given bandwidth resources.

The framework features directed graph models that characterize the

data unit dependencies of multi-view content and a collection of tech-

niques for computing the optimal transmission policies, either ex-

actly or approximatively. The computational requirements of the op-

timization can be reduced by a spatial distortion model that we design

as part of the framework. By formulating the policy selection prob-

lem within a rate-distortion framework, we derive significant benefits

in transmission efficiency against a conventional reference technique.

Related work includes [1] that studies resource allocation in

video surveillance networks via game-theoretic methods, however,

with no spatial correlation consideration, and [2] that applies dis-

tributed source coding principles to multi-view content. In addition,

[3] investigates stereoscopic content adaptation to varying network

conditions, by dynamically changing encoding parameters. Simi-

larly, [4] considers user head position tracking for dynamic allocation

of encoding resources across the captured views.

This work has been supported by the Swiss NSF Ambizione Career
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2. SYSTEM SETUP

2.1. Multi-view Content

The content features N views captured by their respective cameras.

We consider that the content has been encoded using one of the fol-

lowing two approaches that exist at present. In particular, the re-

cent Multiview Video Coding (MVC) extension of the H.264 stan-

dard [5] employs inter- and intra-view prediction simultaneously in

order to maximize compression efficiency. On the other hand, the in-

creasingly popular ”video plus depth” multiview format [6] employs

intra-view prediction only, in order to limit its encoding complexity,

however, it encodes in addition a depth signal for each camera.

2.1.1. MVC representation

The introduced intra- and inter-view dependencies between the en-

coded data units (video frames) associated with the different cameras

can be modeled via a directed acyclic graph. Then, a directed edge

from node j to node i in the graph signifies that data unit i needs to be

decoded first, in order to decode data unit j. Symbolically, this par-

tial ordering property of the data units can be represented as i ≺ j,

i.e., i is an ancestor of j in the encoding hierarchy.

To each data unit l, we assign the following quantities. Bl repre-

sents the size of the data unit in bytes and td,l its decoding deadline.

Precisely, this is the time by which l needs to be decoded in order to

be displayed. ∆Dl represents the corresponding reduction in recon-

struction distortion of the content that the useful decoding of l will

contribute to. Otherwise, the decoder will employ the closest decod-

able ancestor data unit j ≺ l to conceal the absence of l by td,l at

the receiving client, when the content is reconstructed. Thus, ∆Dc
l,j

denotes the reduction in reconstruction error when missing data unit

l is replaced by data unit j at display.

From the reconstruction distortion reduction values associated

with the individual data units, we can compute the corresponding

quantities at the view level. Specifically, Di =
∑

l∈Vi
∆Dl repre-

sents the reconstruction distortion reduction associated with decod-

ing view i, where Vi denotes the set of data units comprising this

view. Similarly, Dc
i,j =

∑
l∈Vi

max{m≺l}
m∈Vj

∆Dc
l,m is the reduction

in reconstruction error for the multi-view content when missing view

i is concealed by view j, at decoding. Lastly, we define D0 to repre-

sent the reconstruction error of the content when no view is available

to be decoded. For instance, D0 can be computed as
∑

i
Di. Note

that the data unit dependency graph also induces a partial decoding

order at the view level. Hence, we can write i ≺ j, if view i always

precedes view j in the encoding hierarchy of data units.

2.1.2. Video plus depth representation

The same formalism from the earlier section carries over. To each

data unit l of view v in the content graph we can again assign the

quantities Bl,v , td,l, and ∆Dl,v , as before. Similarly, each l will

feature a set of ancestor {j ≺ l} and descendant {j ≻ l} data units

in the graph. Without loss of generality, we assume that the same

data unit interdependencies have been employed to encode the video

and depth signals of every view. Thus, there is no need to subscript l
and its delivery deadline and concealment set with the view index v.

The presence of depth information motivates us to devise a some-

what different error concealment strategy in this case. In particular,

let v denote the index of the view for which data unit l is missing at
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decoding and let v1 and v2 be two other views for which the corre-

sponding data unit l is decodable. Then, ∆D
c(·,v1,v2)
l,v represents the

reduction in reconstruction error for the content if missing data unit l
of view v is recovered at decoding via joint spatial concealment from

data units l in views v1 and v2. The recovery procedure operates as

follows. First, the image content associated with data units l in views

v1 and v2 is mapped to view v using the corresponding depth sig-

nals. The two projections are then blended together to generate an

approximation to the content associated with data unit l in view v.

An algorithmic description of the concealment procedure is in-

cluded in Algorithm 1 below. The mapping F l
vi→v is carried out by

a back projection of the image content of data unit l of view vi to the

3D scene coordinates, followed by a projection to the camera loca-

tion of view v [7]. The operator ⊕ in Line 10 signifies a pixel-wise

OR combination between the two projections F l
v1→v and F l

v2→v .

Specifically, a pixel in the recovered content F̂ l
v is declared present

if it is available at least in one of the two projections. Otherwise, it is

declared missing. Present pixel p ∈ F̂ l
v takes on the single available

value in one of the projections or is computed as the average of the

two corresponding pixels available in both F l
v1→v and F l

v2→v .

Algorithm 1 Data recovery via spatial mapping

Input: Missing data unit l of view v
1: Check for decodable spatial neighbors l in views vi 6= v
2: if None then
3: Replace l by a gray-level frame; Exit
4: else if One (v1) then

5: Map l in v1 to v using depth signal Z1 (F̂ l
v = F l

v1→v)
6: else
7: Find two nearest such views (=⇒ v1, v2)
8: Map l in v1 to v using depth signal Z1 (=⇒ F l

v1→v)

9: Map l in v2 to v using depth signal Z2 (=⇒ F l
v2→v)

10: Blend the two projections (F̂ l
v = F l

v1→v ⊕ F l
v2→v)

11: end if

Finally, the view level distortion reduction values are com-

puted as follows. We define Dv =
∑

l
∆Dl,v , analogously to

Section 2.1.1. Then, Dc
v,(v1,v2)

=
∑

l
∆D

c(·,v1,v2)
l,v represents the

reduction in reconstruction distortion for the content if view v is

interpolated from views v1 and v2, at decoding.

2.2. Transmission Policy

We consider that the server can only communicate to the client a

complete subset of the N views. That is, each of the views can be

either fully sent or omitted (dropped) at the server. The server needs

to decide then which specific views should be selected for transmis-

sion. This is a network flow type analysis where it is assumed that

the forward channel is error-free, but rate-constrained. The decision

policy of the server is denoted as M = (M1, . . . ,MN ), where Mi

is a binary variable representing the choice to omit view i at trans-

mission. That is, Mi = 1 signifies the decision not to communicate

view i over the forward channel, while Mi = 0 denotes the opposite.

3. RECON. QUALITY & TRANS. RATE

Let DF (M) denote the overall reconstruction distortion of the multi-

view content. Then, RF (M) denotes the corresponding transmission

rate at which the server is sending the content to the client.

3.1. MVC representation

We first formulate an expression for the expected distortion in (1).

This is followed by an expression for the expected transmission rate

in (2). The first product term in (1) represents the event of decod-

ing view i at the client. The following sum term accounts for the

alternative event of concealing its absence at decoding, with other

decodable views comprising the content.

DF (M) =D0 −
N∑

i=1

∏

j�i

(1−Mj)Di (1)

+
∑

j≺i




∏

k�j

(1−Mk)



Ml≻jD
c
i,j ,

RF (M) =

N∑

i=1

(1−Mi)
∑

l∈Vi

Bl . (2)

3.2. Video plus depth representation

Deriving DF (M) is simpler in this case, due to the absence of inter-

view encoding dependencies. Note the equivalence between the ex-

pressions for the expected transmission rate in (2) and (4).

DF (M) = D0 −
N∑

v=1

(1−Mv)Dv +MvD
c
v(M−v) , (3)

RF (M) =

N∑

v=1

(1−Mv)

L∑

l=1

Bl,v . (4)

In (3), Dc
v(M−v) represents the distortion reduction for the content,

if missing view v is interpolated from other views at decoding. This

quantity depends on the transmission policy of the server for views

j 6= v, hence the notation M−v = (M1, . . . ,Mv−1,Mv+1, . . . ,MN ).
We define Dc

v(M−v) = Dc
v,(v1,v2)

, for v1 = argmin{j 6=v}
Mj=0

||Lj −

Lv|| and v2 = argmin{j 6=v,v1}

Mj=0

||Lj − Lv||. Here, Lj are the cam-

era coordinates of view j and ‖·‖ measures the magnitude of the

relative difference between two camera locations. In words, v1 and

v2 represent the two transmitted views closest to v.

4. POLICY OPTIMIZATION

We consider that the communication channel has a finite capacity C.

We are interested in solving the following optimization problem

min
M

DF (M) , s.t.RF (M) ≤ C.

We reformulate it into an unconstrained optimization using the La-

grange multiplier method [8]. Thus, we aim to minimize JF (M) =
DF (M) + λRF (M), for some Lagrange multiplier λ > 0. We

design exact algorithms and greedy heuristics to carry out this task.

Computing λ for a given C can be done via iterative techniques,

e.g., the bisection search [9]. Alternatively, the whole lower-convex

hull of solutions M∗(λ) can be computed by sweeping λ from very

small to very large values. Then, we select the point M∗ on the

lower-convex hull that exhibits the largest RF (M
∗) ≤ C.

The space of prospective policies is not large. Thus, we compute

the optimal solution by enumerating them and selecting the policy

M
∗ that exhibits the smallest Lagrangian JF (M). This approach

applies uniformly to both content representation formats that we con-

sider. In contrast, the different form of DF (M) in (1) and (3) moti-

vated us to develop two separate greedy optimization techniques. We

employ them instead to compute an approximative solution M̂
∗.

We proceed by describing the greedy heuristic in the case of

MVC encoding. First, we derive the impact that not sending view

l will have on the reconstruction quality of the content, given the

transmission decisions for the other views. This quantity is obtained

from (1) by grouping terms

Sl =
∑

j�l

∏

k�j

k 6=l

(1−Mk)Dk +
∑

j≻l

∑

i�l

i≺j

∏

k�i

k 6=l

(1−Mk)Mp≻iD
c
j,i

−
∑

j≻l

∏

k�i

i≺l

(1−Mk)D
c
j,i . (5)
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The first summation term in (5) accounts for the impact of view l on

decoding descendant view j � l. The second accounts for the impact

of view l on reconstructing missing view j via another view i � l,
for i ≺ j. Finally, the third summation term accounts for the fact that

missing view j may also be reconstructed via view i ≺ l. Hence, Sl

should be reduced by this factor (note the minus sign in front).

For every view l, we compute Sl, assuming Mi = 0, i 6= j.

Then, we compute the factors λl = Sl/
∑

j∈Vl
Bj that describe the

reconstruction quality impact per unit of data of view l. Finally, we

sort λl in decreasing order and select to transmit the corresponding

first j∗ < N views that have an aggregate data rate that does not ex-

ceed the capacity of the forward channel. An algorithmic description

of the greedy heuristic is provided in Algorithm 2.

Algorithm 2 Compute policy M̂
∗ (MVC format)

1: Set Mi = 0, M̂∗
i = 1, for i = 1, . . . , N

2: for l = 1 to N do
3: Compute Sl using (5); λl = Sl/

∑
j∈Vl

Bj

4: end for
5: Sort λl in decreasing order (=⇒ λlj )

6: Find index j∗ = argmaxj

∑j

i=1

∑
m∈Vli

Bm < C

7: for j = 1 to j∗ do

8: Set M̂∗
lj

= 0

9: end for

Next, we describe the greedy optimization technique that applies

to content represented in the video plus depth format. Initially, we

set M̂∗
j to one for every view j. Then, we select to send the view

with the biggest impact on (3) per unit of transmitted data and data

rate smaller than C. The procedure is iteratively repeated by se-

lecting the next best view that contributes to the highest incremental

improvement in reconstruction quality per unit of additional trans-

mitted rate, as long as the cumulative data rate of all selected views

does not exceed C. In Algorithm 3, we provide a formal description

of the optimization. The symbols \ and ∪ in Lines 5 and 13 signify

the operations of set difference and set union, respectively.

Algorithm 3 Compute policy M̂
∗ (video plus depth format)

1: Set M̂∗
j = 1, ∀j, S = ∅, V = {1, . . . , N}, D

(0)
F = D0

2: for i = 1 to N do
3: M = M̂

∗

4: Set p = 0, Xj = 0, Yj = 0, for j = 1, . . . , N − |S|
5: for l ∈ V \ S do
6: Set Ml = 0; Compute DF (M) using (3); p = p+ 1

7: Set Xp = l, Yp = (D
(i−1)
F −DF (M))/

∑
j∈Vl

Bj

8: Set Ml = 1
9: end for

10: Find k = argmaxj Yj ; Set l = Xk

11: if
∑N

j
(1− M̂∗

j )
∑

m∈Vj
Bm +

∑
m∈Vk

Bm < C then

12: Set M̂∗
l = 0; Compute DF (M̂

∗) using (3)

13: Set D
(i)
F = DF (M̂

∗); S = S ∪ l
14: else
15: Exit
16: end if
17: end for

5. SPATIAL DISTORTION MODEL

The characterization of the video plus depth representation of multi-

view content in Section 2.1.2 considered that a missing data unit can

be reconstructed from up to two spatial neighbors. This choice has

been inspired by the observation that the reconstruction quality of

such data only marginally improves when additional adjacent views

are employed to carry out the depth signal-based recovery. We ex-

ploited this fact to limit the complexity of our formalism of the con-

tent reconstruction process and ensure its high degree of accuracy, si-

multaneously. We made additional observations of the performance

of depth signal-based data recovery on actual content that allowed us

to develop a simple model that precisely characterizes the reconstruc-

tion error as a function of the missing view’s location. Concretely,

we noted that the reconstruction quality of view v is inversely pro-

portional to its spatial position relative to views v1 and v2. That is,

Dc
v,(v1,v2) = α exp (−β1||Lv − Lv1 || − β2||Lv − Lv2 ||) . (6)

The parameters of the model in (6) depend on the geometry of

the three-dimensional scene captured by the multiple cameras and

their relative positions in the space, as well as on the characteristics

of the content itself. We design another greedy heuristic that exploits

the model to compute the policy M̂∗. It assumes that the view-level

encoding quality and data rate are (approximately) uniform across

all views. Then, different views can be differentiated in terms of

importance solely by how well they can be utilized to recover other,

missing views at the client. Using (6), the optimization computes

these impact factors for each view j for which M̂∗
j = 1 yet. Then, it

selects the highest impact factor view and sets its policy entry to zero.

The procedure is repeated until the channel capacity limit is reached.

Due to space limits, we omit its algorithmic description here.

6. EXPERIMENTS

In our experiments, we employ the two commonly used test se-

quences Ballet and Breakdancer [10]. In the case of each, the

content comprises eight camera views recording the scene of inter-

est. There are 100 frames associated with a view, captured at a rate of

15 frames per second. Each view is encoded at an average Y-PSNR

video quality of around 38 dB. We set the GOP size to eight frames.
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Fig. 1. Quality (dB) versus rate (Mbps) for MVC content Ballet.
Views to send by Opt (M∗) are incrementally denoted at each point.

Let Opt and Greedy denote the performances of the full opti-

mization and its greedy approximation. In addition, we investigate

the rate-distortion efficiency of a conventional system that selects

views to transmit in no particular order, denoted Conv. In Figure 1,

we show the video quality versus transmission rate (capacity) de-

pendencies for the three systems under examination, for the MVC

content Ballet. It can be seen that Opt substantially outperforms the

baseline system Conv that is content agnostic in its operation. For

instance, at a rate of 1.4 MBps, an improvement of 10 dB in video

quality is registered. The gains achieved by the optimization are due

to the fact that it takes into account the importance of each view for

the overall reconstruction quality of the content, when making view

selection decisions. The indices of the views transmitted by Opt are

indicated in an incremental fashion next to its operating points in

Figure 1. It is encouraging to see that the performance of Greedy is
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practically identical to that of the full optimization. This is because

the GOP encoding structure at the view level is simple, implying a

strong view priority order that is easy to capture, and each view is

encoded at roughly the same distortion-rate efficiency. Specifically,

the first few view selection decisions of Greedy are identical to those

of Opt and follow the relative importance of each view, as imposed

by the GOP hierarchy.
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Fig. 2. Quality (dB) versus rate (Mbps) for MVC content Break-
dancer. Views to send by Opt (M∗) are incrementally denoted.

We observe an analogous outcome in the case of the MVC con-

tent Breakdancer. The only notable difference is that a different

range of transmission capacity values needed to be used in this case

due to the more dynamic nature of this content that makes it less

distortion-rate efficient to encode. Still, we again observe a substan-

tial improvement over the content-agnostic system Conv. For exam-

ple, at a transmission rate of 2.8 Mbps, a gain of 12 dB in video

quality is achieved by both Opt and Greedy. Similarly to the case of

Ballet studied above, the performances of the latter two systems are

practically overlapping over the whole range of transmission capaci-

ties considered in Figure 2. Interestingly, we can see that Opt chose

to transmit the camera views in a different order in this case, as their

indices denoted in Figure 2 indicate. This is due to the divergent

rate-distortion characteristics of the video signals associated with the

camera views, across the two multi-view sequences.
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Fig. 3. Quality (dB) versus rate (Mbps) for VpD content Ballet.
Views to send by Opt (M∗) are fully denoted at each operating point.

Next, we study view selection policies in the case of video plus

depth content. Due to the fact that no inter-view encoding dependen-

cies are employed now, the policies1
M

∗ do not exhibit any longer

the property of being embedded. For the same reason, we witness

less degradation in video quality in this case, when only a subset

of views can be transmitted, aided further by the prospect of depth

signal-based concealment from adjacent views. These observations

1Denoted next to every operating point of Opt.

are well noted in Figures 3 and 4 that show the performances of

Opt, Greedy, and Conv in the cases of Ballet and Breakdancer, re-

spectively. In addition, we examine in the figures the transmission

efficiency of the view selection policies computed by the optimiza-

tion, with the aid of the spatial distortion model from Section 5. The

performance of this system is denoted as Model.

As seen from Figure 3, Opt again outperforms the baseline sys-

tem Conv in the case of VpD Ballet, however, with a smaller margin.

Specifically, the Y-PSNR video quality gains do not exceed 2 dB

now. In Figure 3, we denote the view selection policies by Opt next

to its operating points. It is encouraging to see that the performances

of both Model and Greedy closely follow that of the full optimization.
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Fig. 4. Quality (dB) versus rate (Mbps) for VpD content Break-
dancer. Views to send by Opt (M∗) are fully denoted at each point.

Lastly, in Figure 4 we witness analogous performances of the

four systems under comparison, in the case of the VpD content

Breakdancer. Still, the view selection policies executed by Opt are

different here, relative to those indicated in Figure 3. This is due

to the divergent view-level rate-distortion characteristics of the two

multi-view sequences, as explained earlier. Furthermore, the more

dynamic nature of Breakdancer allows for somewhat larger video

quality gains over Conv, as evident from Figure 4.

7. CONCLUSION

The building blocks of our framework are the models of the pack-

etized multi-view source and the spatial error recovery procedure

that is employed at the client to reconstruct missing data. Our op-

timization techniques exploit them in a synergistic manner such that

superior rate-distortion efficiency is achieved over content-agnostic

systems, when scheduling multi-view data for transmission over rate-

limited channels. It is encouraging from the perspective of practical

deployment that the greedy and model-based instances of our opti-

mization still deliver significant performance gains over the reference

system that we investigated.
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