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ABSTRACT

Most approaches for speech signal processing rely solely on

acoustic input, which has the consequence that spectrum es-

timation becomes exceedingly difficult when the signal-to-

noise ratio drops to values near 0 dB. However, alternative

sources of information are becoming widely available with

increasing use of multimedia data in everyday communica-

tion. In the following paper, we suggest to use video input

as an auxiliary modality for speech processing by applying a

new statistical model – the twin hidden Markov model. The

resulting enhancement algorithm for audiovisual data greatly

outperforms the standard audio-only log-MMSE estimator on

all considered instrumental speech quality measures covering

spectral and perceptual quality.

Index Terms— Multimodal speech processing, audiovi-

sual speech recognition, state-based speech enhancement

1. INTRODUCTION

Speech enhancement has been using HMM speech models for

a long time [1, 2, 3]. The idea of applying speech recognition

HMMs for this purpose is appealing due to their rich informa-

tion sources, which may be tapped to further improve speech

enhancement. However, direct implementations of this idea

are confronted with two major problems:

Firstly, a good feature space for speech recognition is not

typically appropriate for speech processing. While suitable

recognition features are characterized by their mutual decor-

relation, low dimensionality, and speaker independence, the

speech processing features, in contrast, need to have a suffi-

ciently high resolution to yield detailed speech spectrum es-

timates - a prerequisite that almost directly implies high di-

mensionality, inter-feature correlations, and thus, a model that

describes pitch and other speaker characteristics unrelated to

phonetic information.

Secondly, degraded audio data also makes the intermedi-

ate step of ASR increasingly difficult, which means that good

estimates of the underlying ASR state sequence are extremely

hard to obtain by principle.
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1.1. The Twin HMM

To counteract the first of these difficulties, we suggest the use

of a statistical model apt to describe the co-evolution of two

streams of data – one of them suitable for recognition and the

other for speech processing. We term this model twin HMM,

to emphasize the reliance on two output distributions for each

HMM state.

In this model, the ASR recognition features can be cho-

sen solely for maximum phonetic discriminance. The synthe-

sis features need to have the same temporal evolution as the

recognition features, but they do not require the same discrim-

inance properties. Rather, they should contain all information

needed to reconstruct (synthesize) speech signals.
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Fig. 1. Concept of twin-HMM for model-based speech en-

hancement

Figure 1 depicts the core idea of this concept, namely, hav-

ing one underlying state sequence with two associated obser-

vation models – one for recognition purposes and one dedi-

cated to speech synthesis.

1.2. Audiovisual Speech Processing

The second problem of ASR-based speech processing – de-

grading performance at decreasing SNRs – can be counter-

acted by using audiovisual data for the recognition phase.

Since the video features are independent of the acoustical

environment, this helps to obtain maximally reliable state

sequences for the final synthesis step.

In the following, we will describe our new framework,

comprising both optimizations – twin-HMMs for modeling

the co-evolution of recognition and synthesis features, and au-

diovisual ASR – in Sec. 2. Experiments and results will be

shown for a small-vocabulary test setup in Sec. 3 and com-

pared to related state-of-the-art techniques in Sec. 4.
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Fig. 2. Framework.

2. FRAMEWORK DESCRIPTION

Speech processing using twin HMMs consists of three main

phases, the training, recognition, and synthesis phase, as

shown in Figure 2.

2.1. Training

In the training phase, two statistical models are learned, firstly,

a video-only HMM set for the visual modality, and secondly

a twin HMM set for audio recognition (REC) and synthesis

(SYN) features. For video data, the training is performed by

the EM algorithm [4]. For audio data, training of the REC

features also takes place using the standard EM algorithm, but

we additionally store the state occupation probabilities γ from

the final expectation step of the EM algorithm.

Estimating the parameters of the SYN distribution is done

by applying the reestimation formulas of the maximization

step in the EM algorithm to the SYN features, while using the

stored state occupation probabilities γ to weight their contri-

butions to all states in the model.

2.2. Recognition

To enhance a noisy audio signal, it is first transcribed. For this

purpose, the video features and the twin-HMM REC features

are fed to a coupled HMM (CHMM) [5] recognizer. CHMMs

are dynamic Bayesian networks that describe the co-evolution

of the audio and video features over time, while maintaining

their natural correlation. The composition of the CHMMs

from the trained ASR audio and video models is performed

as described in [6], using only the REC output distributions

for the audio part of the CHMM.

Using these CHMMs, it is possible to perform audiovisual

speech recognition, for which we use the JASPER system [7].

The hypothesized words are then used to find the best state se-

quence in the twin HMM, by applying the forward-backward

algorithm to the REC features word-by-word and choosing

the state with maximal posterior probability at each frame.

This two-step procedure of Viterbi recognition followed by

forward-backward state probability computation is necessary

to avoid excessive computational complexity in the fusion of

audio and video information.

2.3. Synthesis

The synthesis phase is composed of three main blocks,

namely, SYN feature extraction, speech enhancement and

speech synthesis.

After extracting the SYN feature vectors ySt
from the dis-

torted signal, as shown in Figure 2, a Bayesian speech en-

hancement algorithm is used to find an unbiased estimate x̂St

of the clean SYN feature vector xSt
, with t denoting the time

frame index. Since enhancement algorithms cannot perfectly

reconstruct the clean feature vector from the noisy data, the

enhanced feature vector usually contains residual noise and

estimation errors et. Thus, we can write

x̂St
= xSt

+ et. (1)

Assuming that the clean feature vector xSt
in (1) is determin-

istic and the error vector et is zero-mean Gaussian, i.e. et ∼
N (et; 0,Σet

), the estimated feature vector x̂St
can also be

modeled as Gaussian

p(x̂St
|xSt

) = N (x̂St
;xSt

,Σet
) (2)

with mean xt and diagonal covariance matrix Σet
.

3727



(a) (b) (c) (d)

4-

3-

2-

1-

0-

fr
eq

u
en

cy
[k

H
z]

Fig. 3. (a) Spectrum of the three second long GRID sentence "BIN BLUE BY M ONE SOON" uttered in clean conditions.

(b) The same sentence with added babble noise at 0 dB SNR. (c) The log-MMSE enhanced spectrum. (d) The filtered noisy

spectrum after twin-model-based speech enhancement.

Since this full distribution model is needed in the speech

synthesis block, the function of the speech enhancement

block is not just to enhance the speech signal but rather to

estimate its probability density function (PDF) p(x̂St
|xSt

).

In the speech synthesis block, the synthesis output dis-

tribution from the training phase, the best state sequence

obtained in the recognition phase, and the above PDFs

p(x̂St
|xSt

) are used to synthesize a new enhanced signal.

To do so, we assume that the hidden clean feature vector xSt

is generated from the state q(t) = i at time t according to

the synthesis output distribution p (xSt
|q(t) = i), and that

the enhanced feature vector x̂St
is generated from the cor-

responding clean feature vector xSt
according to the PDF

p(x̂St
|xSt

).

Using these assumptions, we propose the conditional ex-

pectation E [xSt
|x̂St

, q(t) = i] of the clean feature vector xSt

given the parameters of state i and the enhanced feature vec-

tor x̂St
as an estimate for the hidden clean feature vector. We

compute this conditional expectation as the mean of the con-

ditional PDF p (xSt
|x̂St

, q(t) = i). For the sake of simplicity,

we have merged the mixture components of the synthesis out-

put distributions to a single Gaussian with mean vector µi and

covariance matrix Σi. Since the PDF p(x̂St
|xSt

) is Gaussian

as well, the needed posterior distribution becomes [8]

p (xSt
|x̂St

, q(t) = i) = N
(

xSt
; µ̃i,t, Σ̃i,t

)

(3)

with mean vector

µ̃i,t = Σet (Σi +Σet)
−1

µi +Σi (Σi +Σet)
−1

x̂St
. (4)

The mean vectors µ̃i,t are then used as estimates of the hidden

clean SYN features, from which the speech signal are finally

synthesized via the overlap-add method.

From (4), it can be noticed that µ̃i,t is a weighted sum of

the mean vector of the SYN output distribution of the ith state,

and the mean vector of the PDF p (x̂St
|xSt

), which is gener-

ated by the speech enhancement block. The weights depend

on the covariance matrices Σi and Σet , which are the quanti-

tative representation of the uncertainty of each hypothesis.

3. EXPERIMENTS AND RESULTS

3.1. Dataset

Two male and two female speakers are chosen from the Grid

audio-visual database [9] to evaluate the presented framework.

The speech data of each speaker are divided into a training and

a test set. The test sets of all speakers are artificially distorted

with three types of noise: white noise, buccaneer jet cock-

pit noise and speech babble. The noise signals, taken from

the NOISEX database [10], are added to the speech data at a

signal-to-noise ratio (SNR) in the range from 15 dB down to

0 dB in accordance with ITU-T P.56 [11].

3.2. Experimental setup

All speech signals are downsampled from fs = 25 kHz, the

original sampling frequency of the Grid database, to 8 kHz.

The REC features are required to work well in ASR sys-

tems, and should be chosen for independence, saliency and ac-

ceptable robustness against noise and reverberation. As such

properties are available in mel-frequency cepstral coefficients

(MFCCs) [12], we are using the first 13 static MFCCs ex-

tracted by the ETSI advanced front-end (AFE) [13] and the

26 corresponding ∆ and ∆∆ coefficients as REC features.

For the SYN features, we have chosen the short-time spec-

tral amplitude with 129 dimensions. As the the twin model’s

REC and SYN features must use the same framing parame-

ters, the overlap was changed from 120 samples (defined in

the ETSI-AFE) to 150 samples, to provide better synthesis

quality with a Hanning window of 200 samples.

The video features are 64-dimensional DCT coefficient

vectors, encoding the appearance and shape of the speakers

mouth. The corresponding mouth region was determined au-

tomatically by a Viola-Jones face and mouth detector [14].

All models are trained using the clean signals as described

in Section 2.1. Each HMM set consists of 51 whole-word

HMMs and one silence HMM. The word HMMs are left-to-

right linear models, with the number of states a multiple of the

number of phones in the word – a factor of three for the audio

and of one for the video models. The states use 4-component

diagonal covariance GMMs for the recognition models and

1-component diagonal GMMs for the SYN features.
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Table 1. Segmental SNR, PESQ, STOI and Recognition Accuracy

Noise Segmental SNR PESQ STOI Accuracy

Type
SNR unpro- Log- Twin unpro- Log- Twin unpro- Log- Twin

Audio
Audio-

[dB] cessed MMSE HMM cessed MMSE HMM cessed MMSE HMM Visual

White

15 0.11 1.83 5.35 2.37 2.69 3.02 0.89 0.87 0.91 70.48 93.80

10 -2.22 -0.39 2.66 2.08 2.36 2.68 0.82 0.80 0.85 49.11 88.92

5 -4.27 -2.42 -0.08 1.82 2.03 2.31 0.73 0.71 0.75 37.15 79.26

0 -5.98 -4.27 -2.49 1.63 1.72 1.93 0.64 0.62 0.63 26.95 66.76

Jet

15 0.12 0.79 4.37 2.47 2.77 3.04 0.90 0.88 0.92 85.46 95.04

10 -2.20 -1.49 1.60 2.18 2.44 2.71 0.83 0.80 0.85 57.09 89.98

5 -4.26 -3.30 -1.11 1.89 2.10 2.31 0.72 0.69 0.73 38.30 77.40

0 -5.98 -4.77 -3.35 1.67 1.81 1.90 0.61 0.59 0.60 26.15 64.89

Babble

15 0.35 0.69 3.99 2.71 2.88 3.05 0.93 0.90 0.94 85.63 96.37

10 -1.99 -1.75 1.18 2.41 2.59 2.74 0.87 0.83 0.88 65.07 91.67

5 -4.10 -3.52 -1.39 2.07 2.26 2.35 0.76 0.73 0.78 45.21 82.98

0 -5.88 -4.96 -3.71 1.78 1.91 1.95 0.63 0.60 0.63 30.05 69.42

Clean - 35.00 17.59 18.54 4.50 4.32 4.33 1.00 1.00 1.00 98.76 98.23

In the speech enhancement block, we have used the mean

and variance of a Wiener filter as the parameters of the PDF

p (x̂St
|xSt

) [15]. Improved minima controlled recursive av-

eraging (IMCRA) was used for estimating noise power [16].

3.3. Results

To evaluate the proposed framework, we have used three

objective quality measures: segmental SNR [17], PESQ,

which correlates well with perceived speech quality in many

cases [18], and STOI, which is designed to objectively assess

speech intelligibility [19]. Tab. 1 compares the results of the

twin HMM framework with those of the conventional log-

spectral amplitude MMSE estimator [20] and relates both to

the quality of the unprocessed signal.

In almost every test condition the twin-HMM framework

clearly outperforms the conventional log-MMSE estimator in

terms of all considered quality measures. The de-noised spec-

tra are also much clearer than those obtained with the log-

MMSE estimator, as shown in Figure 3.

Tab. 1 also shows the recognition accuracy of the utilized

audiovisual ASR system, and compares it to audio-only recog-

nition results that would have been obtained using only the

audio REC HMM but no video information. The accuracy of

the used audiovisual recognizer can be seen as a main factor

influencing performance of the proposed framework, which

also highlights the importance of the use of the video infor-

mation in the more distorted conditions.

4. RELATION TO PRIOR WORK AND

CONCLUSIONS

We have presented a new approach for audiovisual speech

processing, which uses a fine-grained, precise and synthesis-

friendly speech model in the form of a twin-HMM, and ap-

plies it in a full audiovisual speech recognition architecture

for maximum robustness.

Since audio-visual speech recognition provides a highly

robust state estimate in noisy conditions, applicability is

less constrained by acoustic conditions than audio-only ap-

proaches to state-based signal estimation such as [21, 1, 2].

The use of a full recognizer – rather than of an ergodic, pho-

netic HMM as in [22, 21] – also distinguishes the approach

from other HMM-based speech processing methods and al-

lows for utilizing syntactic and linguistic information.

In addition, the suggested twin-HMMs provide not only

a recognition but also a synthesis model. In comparison to

prior work, this is a helpful novelty, since we are neither

forced to perform recognition in the synthesis domain – as

in [1, 2] – nor to find nonlinear transformations between the

recognition features and the synthesis domain – as in [3], or

in [23], which presents results only for cepstral domain fea-

ture enhancement. This is important because speech resyn-

thesized from cepstrum features suffers from low quality, due

to the loss of information inherent in cepstral feature extrac-

tion. Also, the twin-HMM couples the synthesis output dis-

tribution directly to the audiovisual state. This differs from

recent audiovisual speech enhancement methods where state-

dependent linear transformations are found between visual

data and the clean audio spectrum, as in [22, 24].

Combining these optimizations has allowed our approach

of twin-HMM-based audiovisual speech processing to no-

tably outperform the standard log-MMSE speech estimator

[20] in terms of the segmental SNR, the perceptually moti-

vated PESQ measure, and the intelligibility estimate provided

by the STOI measure, making it an interesting alternative

framework for speech processing in highly distorted environ-

ments.
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