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ABSTRACT

Query by humming (QBH) allows users to retrieve songs by
humming a clip. In the previous work, the query has been
regarded as a fragment of the music, so the task of QBH
is considered to find a subsequence, which is most similar
to the whole query, from the database. Taking into account
humming errors, especially at the beginning or ending of the
query, we assume that only part of the query is a subsequence
of the music. Based on this assumption, we propose a local
alignment framework which searches for the best match com-
mon subsequence between the query and database music. To
verify the effectiveness of local alignment, two popular match
algorithms, i.e. Linear Scaling and Dynamic Time Warping,
are extended to identify the common subsequence. Experi-
mental results on the 2010 MIREX-QBH corpus show that the
new algorithms improve the retrieval accuracy significantly.

Index Terms— Query by humming, local alignment, mu-
sic information retrieval, dynamic time warping, linear scal-
ing.

1. INTRODUCTION

With the development of computer and network technologies,
music data is growing rapidly, which has caused many new
challenges in managing, exploring and retrieving music data.
One of the challenges is how to provide a more convenient in-
terface [1]. Query by humming (QBH), which can give users
the wanted songs by only humming a few seconds, provides
a natural interface for users in the situation that users only re-
member the melody, rather than the title or artist. However,
it is a challenging problem for developers due to a variety of
humming errors.

The interface of QBH was firstly put forward by Ghias et
al. [2] in 1995. They searched songs by text retrieval tech-
niques. Later, Jang et al. [3] introduced Linear Scaling (LS)
algorithm which scaled the query to match the music. Frame
based Dynamic Time Warping (DTW) [4], which can calcu-
late the warping distance, was also introduced to QBH. Later,
note based String Alignment (SA) was applied, which con-
verted melodies into notes and then used dynamic program-
ming techniques to align two note strings [5]. In 2012 Qiang

et al. designed a multilayer filter for query by humming based
on tempo variation [6]. Guo et al. took advantage of both
melody and lyric to match songs [7]. To improve the retrieval
efficiency, Locality Sensitive Hashing (LSH) [8] [9] [10] was
introduced to QBH [11]. LSH is an index based fast neighbor
search algorithm. Inspired by this indexing strategy, several
variants of LSH were presented later. For example, Yu et al.
suggested a new multi-stage LSH scheme [12] and Guo et
al. proposed pitch and note based LSH indexes [13] [14] to
search for candidate songs.

All the previous studies have been based on an assump-
tion that the whole query is part of a song. However, due to
humming errors, just part of the query is hummed correctly.
In such a case, only part of the query is a subsequence of the
song. If we search for the pieces that best match the whole
hummed clip, humming errors can badly reduce the similarity
score of the target song. To solve this issue, we propose a lo-
cal alignment framework, which aims to identify the common
subsequence with the largest similarity between the query and
database songs. In the framework, part of the query could
be discarded if it contains serious humming errors, especially
at the beginning or ending of the query. Based on such a
framework, we implemented two algorithms: Local Align-
ment Linear Scaling (LALS) and Local Alignment Dynamic
Time Warping (LADTW).

2. SEQUENCE REPRESENTATION OF MUSICAL
PIECES

Before evaluating similarity between the query and database
music, we should transcribe them into comparable sequences,
for example, pitch sequences.

2.1. Extraction of MIDI Theme

The music database consists of MIDI files, which record
the note sequence in the format of (p′1, d

′
1), . . . , (p

′
i, d
′
i), . . .

where p′i is the note value and d′i is the duration. According to
the duration d′i and the frame shift (40 ms in the experiment)
of pitch tracking, the note sequence is transformed to one-
dimensional pitch sequence p = (p1, p2, . . . , pj , . . .), where
pj is the j-th pitch value.
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2.2. Pitch Tracking of the Query

We employed Simplified Inverse Filter Tracking [15] to ex-
tract pitch sequences. In the experiment, the frame length is
set to 64 ms and the frame shift is 40 ms. To ensure overall
smoothness, the extracted pitch sequence is put through a me-
dian filter of order 5. Then the following formula is used to
transform them into semitone scale consistent with the format
in MIDI files:

Semitone = log2(Pitch/440) ∗ 12 + 69 (1)

Finally the query pitch sequence is expressed as q =
(q1, q2, . . . , qi, . . .), where qi is the i-th pitch value.

3. PREVIOUS WORK

The search process of QBH is to employ an effective algo-
rithm to search the music database for several songs which
are most similar to a hummed query. Traditionally, it was re-
garded as a subsequence matching problem since the query
is considered to be part of a song in the database. Two of
the most popular algorithms are Linear Scaling (LS) and Dy-
namic Time Warping (DTW), which are detailed next.

3.1. Linear Scaling

Taking into account that the humming tempo may be incon-
sistent with that of the target music, LS [3] firstly stretches
or compresses the query clip, and then calculates the distance
between the query sequence q = (q1, q2, . . . , qi, . . .) and song
sequence p = (p1, p2, . . . , pj , . . .). After trying a variety of
possible scaling factors, the optimal scaling factor can result
in the least distance. The distance is computed as follows:

D(q, p) =
∑n

i=1 |qi − pi|
n

(2)

where D(q,p) is the distance between sequences q and p,
qi is the i-th pitch value of q, pi is the i-th pitch value of p, and
n is the total number of query pitches. The algorithm can deal
with the problem of different humming tempos. However, if
the tempo of a query varies nonlinearly, mismatch will occur
due to the fixed scaling factor.

3.2. Dynamic Time Warping

DTW [16], which adopts dynamic programming based dis-
tance measure to perform similarity search, can well tackle
the issue of nonlinear tempo variation, so it is a more effec-
tive melody contour match algorithm [4] [17].

Let q= (q1, q2, . . . , qn) be a query sequence and p=
(p1, p2, . . . , pm) be a music sequence. To calculate the warp-
ing distance, DTW constructs an n × m distance matrix
D(i, j)n×m, where D(i, j) is the distance between sequences
(q1, q2, . . . , qi) and (p1, p2, . . . , pj), calculated as follows:

D(i, j) = min

 D(i− 2, j − 1) + d(i, j)
D(i− 1, j − 1) + d(i, j)
D(i− 1, j − 2) + d(i, j)

(3)

And

d(i, j) = |qi − pj | (4)

The boundary conditions for the above recursion can be
expressed as:{

D(1, j) = d(1, j) 1 ≤ j ≤ m
D(i, 1) =∞ 2 ≤ i ≤ n

(5)

After constructing the distance matrix D(i, j)n×m, the
least distance between q and p is evaluated as:

D(q, p) = min︸︷︷︸
n
2≤j≤m

D(n, j) (6)

The two algorithms are designed based on an assumption
that the query sequence is a subsequence of the music. Due to
humming errors, sometimes only part of the query is a subse-
quence of the song, so the essential task of QBH is to identify
the common subsequence with the largest similarity between
the query and music in the database.

4. LOCAL ALIGNMENT FRAMEWORK OF QBH

In Section 3, we have reviewed two popular QBH search
algorithms, i.e. LS and DTW. These methods can provide
good retrieval results if the query is a subsequence of the
song. However, humming errors are inevitable for an un-
professional user, which will badly decrease the retrieval
accuracy. According to our experience, users are usually not
good at the first few notes, and then they are familiar with
the melody. After humming for several seconds, users may
forget the melody or lose patience, leading to more humming
errors. To verify the above speculation, we divide each query
into 5 parts evenly and then employ LS to count the number
of wrong pitches between each part and the corresponding
music. If the distance between two pitches is bigger than
a constant C, the pitch is regarded to be wrongly hummed.
Fig. 1 shows the distribution of wrong pitches based on the
statistics of 100 queries (C=4) in the experiment. As can be
seen, there are more errors in the first and last parts of queries,
which is consistent with the intuitive feeling. If an algorithm
can tolerate humming errors, especially at the beginning or
ending of the clip, it can give a better performance. Based on
this consideration, we propose a novel retrieval framework
called local alignment, which has been widely used in the
field of bioinformatics [18]. This framework aims to identify
the common subsequence with the largest similarity between
the query and music. By identifying the common subse-
quence, those humming errors, especially at the beginning or
ending of the query, can be discarded, and hence the similarity
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score between the query and target song will increase. Local
alignment was firstly introduced to QBH by Pardo where he
employed note based String Alignment (SA) algorithm to
rank the database music [5]. Due to note segmentation er-
rors, note based match algorithms are less effective than pitch
based match algorithms [17], so the performance of SA is not
satisfactory. What’s more, he did not take into account the
particularity of the match in QBH systems. To use the local
alignment framework more effectively, we implement two
algorithms named Local Alignment Linear Scaling (LALS)
and Local Alignment Dynamic Time Warping (LADTW).

4.1. Local Alignment Linear Scaling

LS [3] can be used to scale a sequence to match another
sequence. To identify the common subsequence between a
scaled query q and a song p, LALS is designed to compute
the local similarity as follows:

S(i, i) = max
{

S(i− 1, i− 1) + s(i,i)+CLS

n
0

(7)

And

s(i, i) = −|qi − pj | (8)

where S(i, i) is the similarity between sequences (q1, q2,
. . . , qi) and (p1, p2, . . . , pi), s(i, i) is the similarity of qi and
pi , n is the length of the sequences and CLS is a preset reward
value. It should be noted that s(i, i) is non-positive, which
equals to the negative of the distance. CLS is a compensation
value of s(i, i). It ensures that small distance brings positive
similarity and big distance brings negative similarity. In Eq.
(7), by comparing the similarity with 0, LALS can reduce
the negative impact of mismatch fragments that have negative
similarities at the beginning of the query. Then we can apply
the following formula to obtain the maximum similarity:

S(q, p) = max︸︷︷︸
1≤i≤n

S(i, i) (9)

By finding the maximum similarity from S(i, i) (1 ≤ i ≤
n) instead of S(n, n), LALS can abandon errors at the end-
ing of the query. As these humming errors are not taken into
account for similarity calculation, the target song can obtain
a higher score.

4.2. Local Alignment Dynamic Time Warping

In the task of QBH, due to the arbitrary and variable hum-
ming tempo, the measure of warping distance is more ac-
curate than that of linear distance. LADTW is a fusion of
DTW and local alignment for melody contour match [17],
so it can calculate the common subsequence with the largest
warping similarity between two sequences. If the query pitch
sequence q is (q1, q2, . . . , qn) and the music pitch sequence
p is (p1, p2, . . . , pm), then we construct an n ×m similarity
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Fig. 1. The total number of wrong pitches in different parts
of queries according to the statistics of 100 queries which
are randomly selected from the experimental dataset. In the
statistics, each query is evenly split into 5 parts and then each
part is compared with the corresponding music by using LS,
respectively.

matrix S(i, j)n×m, where S(i, j) is the similarity between
sequences (q1, q2, . . . , qi) and (p1, p2, . . . , pj). After that,
we introduce the following recursion function to compute the
similarity:

S(i, j) = max


S(i− 2, j − 1) + s(i, j) + wCDTW

S(i− 1, j − 1) + s(i, j) + CDTW

S(i− 1, j − 2) + s(i, j) + wCDTW

0

(10)

And

s(i, j) = −|qi − pj | (11)

In Eq. (10), S(i, j) is the similarity between sequences
(q1, q2, . . . , qi) and (p1, p2, . . . , pj), s(i, j) is the similarity of
the i-th pitch of q and the j-th pitch of p as shown in Eq. (11),
CDTW is a preset reward value based on a priori statistic,
whose function is to compensate for the similarity s(i, j) and
bias the search toward a longer match, and w is the weight in
different paths. Local alignment is introduced by comparing
the similarity with 0 as shown in Eq. (10).

The boundary conditions for the LADTW recursion are
shown as follows:

S(i, 1) = max
{

s(i, 1) + CDTW

0
, 1 ≤ i ≤ n

S(1, j) = max
{

s(1, j) + CDTW

0
, 2 ≤ j ≤ m

(12)

The above equations indicate that the optimal path can
start from anywhere of the two sequences. After comput-
ing the similarity matrix S(i, j)n×m, we can easily obtain the
maximum similarity by:

S(q, p) = max︸︷︷︸
1≤i≤n,1≤j≤m

S(i, j) (13)
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Fig. 2. Retrieval accuracy of
LS and LALS.
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Fig. 3. Retrieval accuracy of
DTW and LADTW.

Similar to LALS, the introduction of 0 in Eq. (10) can
eliminate the impact of serious errors, especially at the be-
ginning of queries. By using Eq. (13) to find the maximum
similarity from the entire similarity matrix instead of the last
row of the matrix (as shown by Eq. (6)), the algorithm is
robust to errors at the end of queries.

5. EXPERIMENTS

5.1. Experimental Dataset

The music dataset in the experiments is the MIREX 2010
QBH Think IT corpus [19]. The corpus consisted of 355
queries and 106 MIDI files. All of the queries were hummed
from anywhere. We added 5,000 noise MIDI files, crawled
from the Internet, to form a large database. The evaluation
measurements are mean reciprocal rank (MRR) and Top-K
hit rate. MRR is the average of the reciprocal ranks across
all queries, calculated by MRR = 1

n

∑n
i=1

1
ranki

, where n is
the number of queries and ranki is the ranking of the correct
song for each query. The Top-K hit rate is the percentage that
the correct song is ranked within the top K of all returns.

5.2. Experiments of LALS

Fig. 2 shows experimental results of LALS and LS. The em-
pirical value of CLS in Eq. (7) was set to 3. As can be
seen, LALS improved the retrieval accuracy compared with
LS. The accuracy of Top-20 increased most with the relative
improvement up to 23.1%. Due to the limitation of LS, which
can not deal with the nonlinear variation of humming tempos,
the retrieval accuracy of LALS is still not high despite the use
of local alignment.

5.3. Experiments of LADTW

Fig. 3 shows the performance of LADTW and DTW. In the
experiments, CDTW in Eq. (10) was empirically set to 0.8,
and w was set to 1.6. As can be seen, the retrieval accuracy of
LADTW was much higher than DTW due to the application
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Fig. 4. The performance of different algorithms.

of local alignment. The relative improvement of Top-1 was up
to 29.7% and that of MRR was up to 26.1%. Since DTW itself
has already reached a good performance, the performance of
LADTW is much higher by using the local alignment.

5.4. Experiments of Different Algorithms

Fig. 4 shows the performance of several different algorithms,
such as LADTW, DTW, LALS, LS, RA [13] and String
Alignment (SA) [5]. As can be seen from Fig. 4, despite
the use of local alignment, the performance of SA and LALS
was still very low, because note based SA is much worse than
pitch based algorithms and LALS can not deal with the prob-
lem of nonlinear tempos. In contrast, the retrieval accuracy
of LADTW was highest compared with all other algorithms
owning to the application of local alignment and the baseline
high performance of DTW algorithm.

6. RELATION TO PRIOR WORK

In recent years, the retrieval accuracy of QBH has reached
a bottleneck, so most researches focused on the speed im-
provement [11] [12] [13] [20] or fusion of different meth-
ods [7] [21]. Few papers were published on the improvement
of a single match algorithm in the past two years. In this pa-
per, we proposed a framework of local alignment for QBH.
It was applied to two popular algorithms, i.e. LS [3] and
DTW [17]. The new algorithms improved the performance
greatly.
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