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ABSTRACT 
 
A tensor is used to describe head-related transfer functions 
(HRTFs) dependent on frequencies, sound directions and 
anthropometric parameters. It can represent the multi-
dimensional structure of measured HRTFs. To construct a 
personalization model, high-order singular value 
decomposition (HOSVD) is firstly applied to extract 
individual core tensor as the outputs of the model. Some 
important anthropometric parameters are selected by 
Laplacian score and correlation analysis between all 
measured parameters and the individual core tensor. They 
act as the inputs of the personalization model. Then a 
nonlinear model is constructed based on radial basis 
function (RBF) neural network to predict individual HRTFs 
according to the measured anthropometric parameters.  
Compared with back-propagation (BP) neural network 
method, simulation results demonstrate the better 
performance for predicting individual HRTFs in the 
midsaggital plane at high elevations. 
 

Index Terms—Head-related transfer function, tensor, 
Laplacian score, radial basis function neural network 
 

1. INTRODUCTION 
 

Head-related transfer function (HRTF) is the core to 
generate virtual three-dimensional (3D) auditory. It is an 
acoustical transfer function defined as the ratio of the sound 
pressure at listener’s eardrum to that at the central of head 
with the listener absent. Its corresponding time domain 
representation is head-related impulse response (HRIR). In 
fact, HRTF changes with frequencies, sound directions and 
individual physiological structure. The tiny difference of 
anthropometric shape and size can create a significant 
influence on HRTFs for sound location. Perceptual 
distortions may occur in spatial hearing using generic 
HRTFs without the individual difference. Therefore, it is 
necessary to personalize HRTFs. 

Synthesis of ideal 3D acoustic environment for a person 
needs a lot of measured HRTFs with special instruments. It 
is time consuming and difficult to implement. Therefore it is 
not practical and economical for applications. There are 
some theoretical calculation methods such as snowman 
model [1] and boundary element method (BEM) [2]. 
However, they have a large amount of calculation. Hu et al. 

proposed partial least squares regression (PLSR) [3] and 
back-propagation neural network (BPNN)  [4] to build the 
relation between some anthropometric parameters and 
HRTFs. Due to high dimension of HRTFs, principal 
component analysis (PCA) was applied to get individual 
weight coefficients and basis vectors. However, it requires a 
vectorization process of the original HRTFs. Reshaping a 
multi-dimensional HRTF into a vector obviously breaks the 
inherent structure and may bring the loss of potential 
correlation in the original dataset. To overcome the 
weakness caused by PCA, Grindlay et al. [5] put forward a 
multilinear (tensor) framework for HRTFs. They exploited 
the HRTFs natural structure factoring by N-mode singular 
value decomposition (SVD) and obtained better 
reconstruction performance.  

Eleven concatenate measurements were selected for 
HRTFs customization, which ignore the difference of these 
anthropometric parameters [5]. Anthropometric shape and 
size of a person has different influence on HRTFs [6]. Xu et 
al. [7] found that many parameters of the ear significantly 
correlated with the magnitudes of HRTFs at the high 
frequencies, while the neck shows weak correlation with 
HRTFs at the whole frequency band. Therefore some 
measurements of anthropometric parameters are 
unnecessary. A reasonable selection of anthropometric 
measurements is important for personalized HRTFs 
customization. Hu et al. [4] used correlation analysis to 
select a few parameters. Parameter cross-correlation only 
describes the linear relationship between them. It fails to 
evaluate the significance of a single parameter.  

In this paper, we aim to construct a nonlinear model for 
individual HRTFs prediction. To keep the inherent interac-
tion of multiple variables to HRTFs, a tensor is used to 
represent HRTFs. High-order singular value decomposition 
(HOSVD) is applied to generate the individual core tensor 
with lower dimension as the outputs of the nonlinear 
mapping. The inputs are a few anthropometric parameters 
selected in consideration of the local geometric structure 
and global information in parameters data space. RBF 
neural network is applied to learn the nonlinear relation 
between the selected parameters and the individual core 
tensor. The rest of this paper is organized as follows. 
Section 2 describes the proposed algorithm. Section 3 gives 
the simulation results. The conclusions are given in the last 
section. 
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Fig. 1. Proposed HRTFs individualization method. 

 
2. INDIVIDUAL HRTFS CUSTOMIZATION 

 
The goal of the customization is to predict individual 
HRTFs efficiently via simple anthropometric measurements. 
Our proposed personalization method seeks to build the 
nonlinear relation between some selected anthropometric 
parameters and the individual core tensor representing 
HRTFs from different sound directions. The schematic 
diagram is shown in Fig. 1. ICT denotes individual core 
tensor and BF represents basis function. 

 
2.1. Dimension reduction of HRTF tensor 
 
Firstly, each HRIR is transformed into its corresponding 
complex HRTF by fast Fourier transform (FFT). HRTFs of 
different subjects can be described in a 3-mode tensor 
including sound directions, frequencies, and subjects. Using 
HOSVD, a core tensor can be obtained as the outputs of the 
nonlinear personalization model. It keeps the structure of 
original multi-dimensional data.  

A tensor D F P× ×∈H R denotes HRTF magnitudes of 
P subjects at D sound directions. Each HRTF has 
F frequencies. The dimension of H is very high, so it is 
necessary to reduce its dimension. In order to extract the 
individual core tensor, the dimensions of frequency and 
direction should be reduced and the mode of subject is 
unchanged. HOSVD is the extension of conventional SVD 
for higher-order tensor decomposition [8]. H can be 
decomposed by HOSVD in the first and second mode space 
as 

1 2
(1) (2)T T

= × ×U UW H                           (1) 
where (1)U and (2)U are the new basis matrices. There are 
two steps for dimension reduction of HRTF tensor. One is 
the calculation of the transform matrix ( ) ( 1,2)q q =U  and the 
other is the computation of the ICT. ( )qU is the left singular 
matrix of the n-mode unfolding matrix of H . ( )qU called 
basis function is the truncated matrix of ( )qU . By 
multiplying the basis functions, H is projected into 

' ' ' '( ,  )D F P D D F F× ×∈ < <W R called the ICT. Figure. 2 shows 
the decomposition of HRTF tensor approximate reconstruc-
tion of the original HRTFs is through  

H W
(1)U (2)U

 
Fig. 2. The decomposition and dimension reduction of 
HRTF tensor. 

1 2
(1) (2)= × ×U UH W                       (2) 

with controllable error. 
 
2.2. Selection of anthropometric parameters 
 
Secondly, each listener has his specific anthropometric 
shape and size. We can take following procedure to select 
the anthropometric parameters as the inputs of the nonlinear 
personalization model. First, correlation analysis is 
performed between all the measured anthropometric 
parameters and the individual core tensorW . It is desirable 
to delete some parameters with minor correlation 
coefficients for the selection in the subsequent process. 
Then in order to avoid the unbalanced selection of similar 
parameters, k-means is applied to cluster these parameters 
into m classes. Due to the limitation of cross-correlation 
analysis, we consider the intrinsic properties of the 
parameter space to evaluate them by Laplacian score [9]. 
These parameters of each class are arranged into an 
ascending sequence according to its Laplacian score, 
respectively.  

Suppose there are P subjects and K parameters of each 
subject. They can be denoted by a matrix 1 2[ , , , ]P=A a a a . 

kpa represents the kth parameter of the pth subject. In order 
to model the local geometric structure of anthropometric 
parameters, we construct a nearest neighbor graph G with 
P nodes ( 1,2, , )i i P=a . If ia  and ja are close, we put an 
edge between node i and j with a weight 

2

i j
ijS

t
−

=
a a

                                   (3) 

where t is a known constant. Otherwise, 0ijS = . 

1 2[ , , , ]k k k kPa a a=g  consists of the kth parameter of P  
subjects. For a representative parameter, it is reasonable to 
minimize the following object function 

( )
=

( )
ki kj ijij

k
k

a a S
L

Var

−∑
g

                            (4) 

where ( )Var ⋅ is the variance. kL is the Laplacian score of the 
kth parameter. It captures the local structure and global 
information. For each parameter, its score is computed to 
reflect its locality preserving power.  

After the above selection process, n parameters with 
lower scores and significant influence on HRTFs are 
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selected as the final inputs of the personalization model. 
Without loss of generality, 1 2[ , , , ]na a a=a denotes the n 
selected parameters in the following section. 
 
2.3. HRTF personalization using RBF neural network 
 
When the individual core tensor and a few selected 
anthropometric parameters are determined, a nonlinear 
regression model can be learned by RBF neural network. 
Thus HRTF of a new subject can be predicted via some 
simple anthropometric parameter measurements. RBF 
neural network can approximate nonlinear mapping directly 
from the input and output data with a simple topological 
structure. A three-layer RBF neural network is applied to 
learn the intricate relation between the individual core 
tensor and the selected anthropometric parameters. After the 
regression model is learned from the training data, the 
individual HRTF for a new subject can be predicted by his 
anthropometric parameter measurements.  

The input vector is n parameters 1 2[ , , , ]na a a=a of a 
subject. So the input dimension of network is n. The entries 
of the individual core tensor W act as the outputs of RBF 
neural network. The hidden layer has s nodes. The 
personalization modeling maps the n  parameters into a high 
dimensional space as follows 

=1

( ) ( ) 1
s

i i j j ij
j

w f v i N= = Φ − ⋅ ≤ ≤∑a a c                (5) 

where n
j ∈c R is the data center vector determined by k-

means. ⋅ denotes the Euclidean norm. ijv  is a weight 
calculated by recursive least square (RLS). In general the 
Gaussian function is chosen as the nonlinear function ( )Φ ⋅ . 

iw  is the element of the individual core tensorW and its 
number is ' '*N D F= . After learned from some training 
data, a fixed structure of RBF neural network is obtained. It 
can be used to predict ( )new

iw for a new listener via 
corresponding measured anthropometric parameters. 

( ) ( )

=1

( ) 1
s

new new
i j new j ij

j

w v i N= Φ − ⋅ ≤ ≤∑ a c              (6) 

 
3. SIMULATIONS 

 
The HRTF personalization is based on a large number of 
HRTF measurements. The CIPIC database provides high 
spatial resolution HRIR measurements of 45 different 
subjects [10]. It contains measured HRIRs for both left and 
right ears at 1250 directions including 25 azimuths and 50 
elevations. Each HRIR is sampled at 44.1 kHz sampling rate 
and truncated into 200 points. Azimuths vary from -80° to 
80° and elevations range from -45° to +230.625°.  

In the simulations, the fixed azimuth 0° in the mid-
saggital plane is chosen to model. The HRIR of each subject  

Table 1.  Spectral distortion of HRTF reconstruction at 
different elevations.  

 
Elevation 

( ° ) 
PCA SD 

(dB) 
HOSVD SD 

(dB) 
-45 9.84 3.85 
-16.875 7.34 2.56 
11.25 6.66 1.33 
39.375 7.73 3.95 
67.5 6.54 2.24 
95.625 6.23 3.20 
180 9.24 4.26 
280.125 8.13 2.47 
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Fig.3.  HRTF reconstruction for subject 153. 

 
was transformed into a HRTF by a 256-point FFT. Total 
HRTFs of 30 subjects act as training samples denoted by a 
tensor D F P× ×∈H R , where D is the number of elevations 
(50), F is the number of the frequencies (128), and P is 30 
for the training subjects. Five subjects are used for testing 
and cross-validation method is used. 

First of all, HOSVD was applied to the tensor H . We 
keep the HRTFs in a data reduction of 87% and obtained 
the individual core tensor 10 20 30× ×∈W R . Compared with 
PCA, reconstruction with basis functions by these two 
methods is illustrated in Table 1 and Fig. 3. The spectral 
distortion (SD) is used to measure the reconstruction 
performance and subsequent regression performance. It is 
computed in dB as follows  

2

1 ˆ
( )1SD 20lg
( )

F
i

i i

f
F f=

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

∑
H

H
                    (7) 

where ( )ifH and ˆ ( )ifH denote the ith frequency of the 
measured and reconstructed HRTF, respectively. HOSVD 
captures more representative information.   

Then correlation analysis [4] is done betweenW and 
27 anthropometric parameters. The result demonstrates x5 , 
x11 , d2 , and 1θ with the average of absolute coefficients less 
than 0.14. Then using the similarity of 27 anthropometric 
parameters, they were clustered into 3 classes by k-means. 
These parameters of each class were arranged by Laplacian 
score into an ascending sequence. They are given in Table 2. 
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Table 2. Parameters arranged by its Laplacian score  
in an ascending order. 

 
Class 1 x2 , x11 , x16 , x3 , x12 , x9 

Class 2 
d7 , d2 , 2θ , d1 , d6 , d3 , x5 , d4 , d8 ,  

1θ , d5 , x4 , x8 , x1 , x6 , x7, x13 , x10 
Class 3 x15 , x17 , x14 

 
The half of class 1 and class 2 are reserved. Due to x15 , x17 , 
and x14 in class 3 with large correlation coefficients, all of 
them are reserved. On the contrary, we delete x5 , x11 , and d2 
in the remaining anthropometric parameters due to their 
weak correlation with the ICT. 

In this way, 12 parameters including x2 , x14~x17, d1 , d3 , 
d4 , d6~d8 , and 2θ are finally selected as the inputs of the 
RBF neural network. x14~x17 are important measurements 
for the construction of HRTF estimating models [7]. But 
they are not included in the selected parameters of [3].  

These two steps yielded the inputs and outputs of RBF 
neural network. In reference [4], 16 hidden units can 
achieve the lowest sum-square error value. In this paper, 
there are also 16 neurons in the hidden layer of RBF neural 
network. Its prediction performance is compared with 
BPNN. The SD performance of BP and RBF for subject 153 
at all elevations in the midsaggital plane is shown in Fig. 4. 
Here the ˆ ( )ifH in (7) is the individual HRTF. It can be seen 
that our proposed method has achieved smaller SD in 
elevations ranged from 123.75° to 230.625°. In the Fig. 5, 
the discrepancy between the original HRTFs and individual 
HRTFs may be caused by the information loss in dimension 
reduction and the inherent defect of RBF neural network. In 
general, they approximate the original HRTFs. 
 

 4. CONCLUSIONS 
 
In this paper, HOSVD extracts the individual core tensor 
from the original HRTFs. Anthropometric parameters are 
selected by Laplacian score and correlation analysis. Then a 
nonlinear regression model for individual HRTFs is 
constructed by RBF neural network. Simulation results 
demonstrate that HOSVD has better reconstruction perfor-
mance than PCA for high-dimensional HRTF data. And the 
prediction of individual HRTFs by RBF neural network is 
more accurate than BP for high elevations. However, there 
is larger spectral distortion in the spectral notch. In the 
future, we will improve it and use the proposed HRTF 
customiza-tion for listening experiments. 
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Fig. 4. Prediction performance of BP and RBF networks. 
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Fig. 5. Individual HRTF for subject 153 at o o(0 , 45 )−  and                

o o(0 , 22.5 )− . 
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