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ABSTRACT

Audio signal classification suffers from the mismatch of environ-

mental conditions when training data is based on clean and anechoic

signals and test data is distorted by reverberation and signals from

other sources. In this contribution we analyze the classification per-

formance for such a scenario with two concurrently active sources

in a simulated reverberant environment. To obtain robust classifica-

tion results, we exploit the spatial distribution of ad-hoc microphone

arrays to capture the signals and extract cepstral features. Based

on these features only, we use unsupervised fuzzy clustering to es-

timate clusters of microphones which are dominated by one of the

sources. Finally, signal classification based on clean and anechoic

training data is performed for each of the cluster. The probability

of cluster membership for each microphone is provided by the fuzzy

clustering algorithm and is used to compute a weighted average of

the feature vectors. It is shown that the proposed method exceeds the

performance of classification based on single microphones.

Index Terms— Ad-hoc Microphone Array, Clustering, Classi-

fication, Cepstral Features, LP-CMRARE, MFCC

1. INTRODUCTION

Feature-based classification of audio signals into predefined cate-

gories, e.g. speech, music or noise and into subcategories, e.g. gen-

der of a speaker or the music genre, is an important component

in audio signal processing algorithms for applications like hearing

aids, mobile phones or surveillance scenarios [1]. Often, investi-

gations in this field are based on anechoic and clean audio signals.

In a more realistic scenario an audio signal emitted by one source

often is contaminated by room dependent reverberation and addi-

tive signals from other sources. However, the effect of these signal

degradations on the classification performance has been rarely stud-

ied. For instance in [2] a system for pitch based speech/non-speech

discrimination and a further classification of the non-speech signals

is presented and evaluated for an anechoic and a reverberant single

source scenario. In our contribution we analyze the classification

performance of audio signals in a reverberant scenario and we con-

sider a spatial ad-hoc distribution of multiple sources and multiple

receivers. As a consequence the signal-to-distortion ratio (SDR) of

the captured signals varies according to the position of the sources

and the microphones. Ad-hoc microphone arrays increasingly attract

the attention of researchers as they aim at combining mobile devices

like mobile phones, tablet computers and laptops, all of which pro-

vide audio capturing devices, the ability of audio signal processing
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and integrated wireless connectivity. Whereas in some investiga-

tions the goal is to accurately estimate the position of such devices

for example using voice activity detection and coherence models [3],

energy decay information [4], calibration signals [5] and even avail-

able compass information [6], we aim at building sub-arrays, which

cluster the microphones into groups based on their similarity in the

feature domain. Then, a supervised signal classification based on

anechoic and clean training data determines the type of audio source

which dominates each of the sub-arrays. The obtained information

can be used to specifically pick one of the available signals, for ex-

ample as target signal- or as a noise reference for the previously men-

tioned applications.

The remainder of this paper is organized as follows. In Section 2

we introduce the basic idea of our algorithm and all necessary com-

ponents. The experiments and settings are explained in Section 3.

We present and discuss the results in Section 4 and Section 5, before

we finally conclude the paper in Section 6.

2. SYSTEM CONCEPT AND FEATURES

In a scenario of n audio sources and multiple receivers in a room,

we aim at clustering microphones into n clusters, each being domi-

nated by one of the n sources. For this purpose, our first goal is to

extract features from the audio signals which allow for an unsuper-

vised estimation of clusters. As the feature extraction is executed on

each capturing device itself the amount of data transmitted to other

devices or to one central device can be relatively small. The infor-

mation provided by the audio features is then used for unsupervised

cluster analysis, which might be done in one central device. Finally,

the extracted features of the receivers which are assigned to each of

the n source related clusters are used in a supervised classification

step (Fig. 1). The training data of the classifier is composed of clean

and anechoic signals to avoid room-dependent training which would
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Fig. 1. Algorithm architecture for the example of two source signals.

The signals are captured by several microphones and used for fea-

ture extraction. After an unsupervised clustering step, a supervised

classification is performed in each cluster.
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be too restrictive for practical applications. To make the classifica-

tion results more robust, weighted means of the feature vectors of

each of the devices in a cluster are evaluated.

2.1. Feature Extraction

Rather than performing classification on the captured audio signals

directly, the data is typically transformed to a reduced paramet-

ric representation. In this contribution we consider two cepstrum

based feature sets: the Legendre Polynomial-based Cepstral Modu-

lation RAtio REgression (LP-CMRARE) and the Modulation Mel-

Frequency Cepstral Coefficients (Mod-MFCCs) features. These

features have proven to give very good results in the context of

(anechoic) speech/music/noise classification tasks [7] and constitute

a very compact representation of the signals.

For both feature extraction methods, first a captured audio signal

x(t) is sampled with the sampling rate fs. The digital representation

x(l), where l is the discrete time index, is segmented into B possibly

overlapping frames of length N using a window function W(n), e.g.

the Hann window, where n = 1, 2, . . . , N , and a frame shift P . The

discrete Fourier transform (DFT) of the weighted frame results in the

short-time Fourier transform (STFT) X(k, b) = STFT{x(l)} where

b and k = 0, 1, . . . , N−1 denote the frame index and the frequency

bin, respectively.

2.1.1. LP-CMRARE

To obtain the LP-CMRARE features, the spectrum X(k, b) is trans-

formed into the cepstral domain Xc(ℓ, b), where ℓ = 0, 1, . . . , N−1
is the index of the cepstral coefficient. Since the cepstrum is sym-

metric with respect to ℓ = N
2
+ 1, Xc(ℓ, b) is only considered for

ℓ = 0, 1, . . . , N
2

+ 1 in the following. To analyze the spectro-

temporal evolution of the cepstrum a sliding window DFT is used

to compute the time-varying modulation spectrum of the cepstrum,

X̂c(ν, ℓ, c) =

M−1
∑

m=0

Xc(ℓ, cQ+m)e−j 2πνm

M , (1)

where, starting at sub-frame index b = cQ, the sliding window con-

siders M consecutive sub-frames. The modulation frequency bin

index is specified by ν = 0, 1, . . . ,M − 1 and c and Q depict the

modulation window index and shift, respectively [7]. The magnitude

of the modulation spectrum is averaged over all modulation analysis

windows CT ,

X̃c(ν, ℓ) =
1

CT

CT−1
∑

c=0

|X̂c(ν, ℓ, c)|, (2)

and approximately represented as cepstral modulation ratios (CMR),

where the average of the modulation frequency bands ν1 ≤ ν ≤ ν2
is normalized on the zeroth modulation frequency band (3),

rν1|ν2(ℓ) =

∑ν2
ν=ν1

X̃c(ν, ℓ)

(ν2 − ν1 + 1)X̃c(0, ℓ)
. (3)

This representation can be parametrized efficiently by fitting Legen-

dre polynomials of order p, which finally gives p+ 1 LP-CMRARE

parameters [8].

2.1.2. Mod-MFCC

To compute Mod-MFCC coefficients, the magnitude squared spec-

tral representation |X(k, b)|2 is mapped onto the mel scale using

overlapping triangular windows [9]. The resulting mapped spectrum

is Xmel(k
′, b), where k′ is the mel scale frequency bin. Then, the

MFCCs are calculated by computing the discrete cosine trans-

form (DCT) of the logarithm of the mapped power spectrum

Xmfcc(η, b) = DCT{log(Xmel(k
′, b)

)

} with the cepstral coefficient

index η. Again, to consider the temporal evolution, we compute the

MFCC modulation spectrum X̂mfcc(η, ν, c) similar to (1). Then, the

absolute value of this modulation spectrum is averaged over all CT

frames and normalized to the zeroth modulation frequency band,

similar to (2) and (3). The result is a small feature set, therefore no

polynomial approximation is necessary.

2.1.3. Cepstral Normalization

Room dependent reverberation and additive noise are critical issues

in the context of audio signal classification as they disturb audio sig-

nals in nearly every realistic situation. Reverberation is affected by

changes of the source-receiver setup and by the room properties. The

transmission path from a source to a receiver can be represented by

the room impulse response (RIR). One approach to reduce the ef-

fect of reverberation in audio signal processing is the cepstral mean

normalization (CMN). It is based on the idea that a convolutional

distortion in the time domain corresponds to an additive term in the

cepstral domain. By averaging over a certain amount of time, in

which the RIR can be assumed to be constant and subtracting this

average from the cepstrum, the influence of reverberation might be

reduced [10] [11].

2.2. Signal clustering and classification

The goal of signal clustering is to assign objects to groups with

small intra-group differences and large inter-group differences. In

case of a clustering into groups without training data, unsupervised

classification algorithms can be used to generate unlabeled clusters

of objects [12]. In our investigations we use fuzzy clustering for

partitioning clusters which are dominated by one of the sources. A

fuzzy clustering algorithm, rather than making a hard-decision about

the membership of an object to a specific cluster, estimates a prob-

ability µ = [0, 1], indicating the chance of an object to belong to

each of the possible clusters [13]. This estimation may be done by

minimizing an objective function which considers a µ-weighted dis-

tance between all objects and the estimated cluster centers. A-priori

information about the number of clusters can be introduced to the

algorithm or may be estimated as well. Fuzzy clustering is interest-

ing for our work, as all microphones receive mixtures of all source

signals. If microphones are close to a source, a high cluster member-

ship probability can be assumed. For microphones with a balanced

mixture of source signals and a rather high amount of reverberation,

a smaller membership probability may be assumed, which offers the

opportunity to exclude these microphones.

For the classification of specific classes we will utilize labeled

data to train a classification system. Then, test data are assigned to

the matching class [12]. In our investigation we used a linear dis-

criminant analysis (LDA), which assumes a multivariate normal dis-

tribution for the feature vectors and a pooled estimate of the feature

covariance matrix across all classes [14].

3. EXPERIMENT DESCRIPTION

For all experiments we simulated the scenario of ten microphones

and two active target sources in a room of the size 6.7×4.9×3.5m3

with a reverberation time T60 ≈ 400ms by creating RIRs using the

method in [15] which provides realistic reverberation effects. To

generate the microphone signals the two source signals were con-

volved with the respective RIRs and summed up. In this way each

3693



0 1 2 3 4 5 6
0

1

2

3

4

Room length x [m]

R
o
o
m

 w
id

th
 y

 [
m

]

 

 

Cluster 1
Mic.: 1−5
Source 1: Speech

Cluster 2
Mic.: 6−10
Source 2: Music

rH

Microphone positons

Source Position

Fig. 2. The sources are placed at fixed positions in the room. The 10

microphones are split into 2 clusters and randomly positioned within

the critical distance of each source.

microphone picked up signals from source 1 (clean speech, male and

female, English, [16]) and source 2 (music, different genres, private

database) (Fig. 2). To simulate a more realistic classification experi-

ment an additional background noise class was added in the training

step. For this third class different types of indoor noise sounds (e.g.

vacuum cleaner, dish washer, private database) were used. How-

ever, these noise signals were not added to the microphone signals

and thus were not part of the test data. The position of the sources

was fixed to the approximate critical distance [17] rH + 1m along-

side the wall in x- and half of the room size in y- and z-direction.

The positions of the virtual microphones were randomized in x- and

y-directions within the critical distance of a source, to generate dis-

tinct clusters. This positioning is motivated by the idea that within

the critical distance the direct sound component is dominant. Thus,

this arrangement of microphones allowed for a reasonable evaluation

of the unsupervised clustering and the supervised classification ex-

periments. However, the positioning information was not used in the

following investigations as they were based purely on the extracted

feature vectors.

For all investigations, we extracted LP-CMRARE and Mod-

MFCC features, both with and without CMN, for signals of T = 4
seconds duration sampled at fs = 16 kHz. For the spectral and

cepstral analysis, the frame length was N = 512 and frame shift

was P = 256 samples. For the cepstral modulation analysis the

frame length and shift were set to M = 16 and Q = 8. We approx-

imated the CMRs r1|1 and r2|8 using Legendre polynomial based

parametrization of order p = 12, resulting in 26 coefficients. In

case of Mod-MFCC features the normalized averaged modulation

content was computed for 13 MFCCs, yielding again the modu-

lation ratios r1|1 and r2|8 and thus resulting in 26 coefficients to

summarize 4 seconds of data as well.

3.1. Unsupervised clustering of simulated microphone signals

To evaluate the ability of each feature set to form microphone clus-

ters related to the dominant source contribution the fuzzy c-means al-

gorithm of a freely available Matlab toolbox for fuzzy clustering was

used [18]. As a priori information, the number of clusters was set to

2. The unsupervised clustering was evaluated with 50 scenarios of

five microphones randomly positioned within the critical distance of

each source, and 100 randomized combinations of speech (Source

1) and music (Source 2) signals for each scenario.

3.2. Supervised Classification of simulated microphone signals

To classify the microphones in the supervised classification prob-

lem we now considered the fixed scenario shown in Fig. 2. We

Table 1. Confusion matrices for the unsupervised microphone clus-

tering task in % using the proposed feature sets.

LP-CMRARE LP-CMRARE CMN

Cluster 1 Cluster 2 Cluster 1 Cluster 2

Mic. 1-5 89.2 10.8 90.9 9.1

Mic. 6-10 8.7 91.3 5.4 94.6

Mod-MFCC Mod-MFCC CMN

Cluster 1 Cluster 2 Cluster 1 Cluster 2

Mic. 1-5 94.0 6.0 97.1 2.9

Mic. 6-10 3.2 96.8 3.4 96.6

used 100 audio files for each, speech, music and noise out of which

75% were used as clean data for training the LDA. The classifica-

tion accuracy based on the training data was high for all feature sets

(LP-CMRARE: 98.8%, LP-CMRARE CMN: 95.4%, Mod-MFCC:

96.2%, Mod-MFCC CMN: 93.5%). The remaining 25% of the

data were used as test samples to simulate the microphone signals.

The classification accuracy of each feature set was averaged over 50
cross-validation iterations, in which the combinations of speech and

music and the allocation of test- and training data were randomized.

3.3. Combined Experiment

In the combined experiment we trained the LDA classifier using 75%
of each of the 100 clean and anechoic speech, music and noise sam-

ples, again for the scenario shown in Fig. 2. The remaining 25% of

the speech and music data were processed (microphone simulation,

feature extraction) and used for the unsupervised clustering, result-

ing in 25 cluster estimates. We only considered a microphone to

be a valid member of one of the clusters, if the according probabil-

ity provided by the fuzzy clustering algorithm was larger than 0.7.

Thereby, we excluded signals with a low SDR. Finally, we computed

a new feature vector per cluster using weighted averages of the fea-

ture vectors obtained by the cluster microphones. The weighting

factor accorded to the membership probability of a microphone for

a cluster. This new vector was used as test instance for the LDA. To

rate the performance of this weighted feature vector, we also gener-

ated a non-weighted averaged feature vector based on all five micro-

phones within the critical distance of one source as test data for the

LDA for each of the 25 convolved mixtures. Again, we performed a

50-fold cross-validation.

4. RESULTS

4.1. Unsupervised clustering of simulated microphone signals

Table 1 provides the averaged success rates of assigning micro-

phones 1-5 to cluster 1 and microphones 6-10 to cluster 2 using the

unsupervised fuzzy clustering algorithm. All feature sets provided

distinct characteristics for a successful clustering decision. By ap-

plying CMN, the results improve slightly. The highest accuracy is

provided by the Mod-MFCC with CMN.

4.2. Supervised Classification of simulated microphone signals

Table 2 presents the classification results in % for all simulated mi-

crophone signals and the fixed scenario shown in Fig. 2. Micro-

phones 1-5 are located in cluster 1 and should provide the classifi-

cation result speech, whereas microphones 6-10 in cluster 2 should

provide the classification result music. Both features, LP-CMRARE

and Mod-MFCC, highly misclassify speech when cepstral normal-

ization is not used. As soon as CMN reduces the effects of rever-

beration, the results for speech detection improve. In those cases, a
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Table 2. Averaged classification results in % for LDA classification of single microphone signals in a fixed source-microphone scenario.

Cluster 1 (desired result: Speech) Cluster 2 (desired result: Music)

Mic.-No. 1 2 3 4 5 6 7 8 9 10

LP-CMRARE Speech 33.9 19.5 2.3 45.2 50.3 0.0 1.8 0.8 0.1 0.4

Music 66.1 80.5 97.7 54.8 49.7 99.9 97.7 98.0 99.7 99.2

Noise 0.0 0.0 0.0 0.0 0.0 0.1 0.5 1.2 0.2 0.4

LP-CMRARE Speech 69.3 45.4 12.0 70.5 78.0 1.8 1.7 1.0 3.3 1.3

CMN Music 30.6 54.6 88.0 29.4 22.0 97.0 91.3 90.3 92.8 96.6

Noise 0.1 0.0 0.0 0.1 0.0 1.2 7.0 8.7 3.9 2.1

Mod-MFCC Speech 6.4 0.0 0.0 6.4 10.5 0.0 0.0 0.3 0.0 0.0

Music 93.6 100.0 100.0 93.6 89.5 99.9 99.4 99.0 100.0 99.8

Noise 0.0 0.0 0.0 0.0 0.0 0.1 0.6 0.7 0.0 0.2

Mod-MFCC Speech 58.5 31.8 6.0 59.3 62.6 3.0 6.0 6.3 3.8 3.0

CMN Music 41.5 68.2 94.0 40.7 37.4 96.4 91.4 91.1 96.0 96.5

Noise 0.0 0.0 0.0 0.0 0.0 0.6 2.6 2.6 0.2 0.5

Table 3. Averaged classification results in % for LDA classification

using averaged feature vectors of all microphones in one cluster and

fuzzy-weighted averaged feature vectors.

Microphones Fuzzy
within Cluster

critical distance Estimation

Cl. 1 Cl. 2 Cl. 1 Cl. 2

LP-CMRARE Speech 19.7 0.1 40.3 4.0

Music 80.3 99.8 59.7 96.0

Noise 0.0 0.1 0.0 0.0

LP-CMRARE Speech 57.4 1.5 92.0 16.0

CMN Music 42.6 94.8 8.0 80.0

Noise 0.0 3.7 0.0 4.0

Mod-MFCC Speech 1.1 0.0 8.0 0.0

Music 98.9 100.0 92.0 100.0

Noise 0.0 0.0 0.0 0.0

Mod-MFCC Speech 43.2 2.1 44.0 0.0

CMN Music 56.8 96.9 56.0 100.0

Noise 0.0 1.0 0.0 0.0

majority decision would deliver the desired result. The poor classi-

fication result of microphone 3 for all feature sets in this example is

related to the position of the microphone at the very right of cluster

1 (Fig. 2), which has the consequence of the lowest SDR of all mi-

crophone signals in cluster 1. Music was very well classified for all

microphones in cluster 2. Misclassification as noise only occurs for

LP-CMRARE with CMN to a noticeable amount.

4.3. Combined Experiments

Table 3 shows the results for averaged feature vectors. Results shown

in the first two columns are based on feature vectors equally aver-

aged over all five microphones in each cluster. Again, speech clas-

sification is performed with a poor classification result and apply-

ing CMN improves the result. For the results presented in the last

two columns the cluster memberships probabilities estimated by the

fuzzy algorithm were used. Here, a feature vector is considered for

the weighted averaging only in the case of a high cluster member-

ship probability (> 0.7). Therefore, microphones with a low SDR

might be excluded here. The result for speech classification in clus-

ter 1 for the LP-CMRARE based feature vector improves, especially

in combination with CMN. For the Mod-MFCC feature vectors the

weighted averaging does not improve the classification results to

the same extend. In cluster 2 music is almost always recognized.

Here, the LP-CMRARE CMN have the lowest classification rate

with 80%. Misclassification of one of the clusters as background

noise occurs just very rarely.

5. DISCUSSION

The unsupervised fuzzy clustering of the microphones in two clus-

ters works very well for a combination of a speech source and a mu-

sic source in the simulated scenarios. Interestingly, the CMN brings

only a slight improvement. All feature vectors seem to be distin-

guishable despite the reverberation. This can be explained by the

fact that only distorted features are compared and no clean reference

is used. The classification experiments show that the correct classifi-

cation of speech signals is a difficult problem when reverberation and

a competing music source are present. The observed shift (e.g. Tab.

3) towards the classification result music may be related to natural

speech pauses in which however music is present in the microphone

signals. The reduction of reverberation effects using CMN improved

the single channel classification results, thus a majority decision in a

cluster might deliver the desired result .

The approach of generating a new feature vector by averaging all

five feature vectors in a cluster to obtain one classification result per

cluster delivers comparable results to a majority decision of single

microphone classification results within a cluster. The exploitation

of cluster membership probabilities delivered by the fuzzy clustering

for the generation of a smoothed feature vector works well for LP-

CMRARE CMN features and improves the correct classification of

speech in these cases.

6. CONCLUSION

The performance of audio signal classification is reduced drastically

when environmental conditions influence the test data and therefore

lead to a mismatch between training and test data. Our investigation

showed that ad-hoc microphone arrays, cepstral audio features and

fuzzy clustering can be used to obtain solid cluster-based classifica-

tion results for simulated reverberant audio signals in a two-source

scenario, although the training data for the classifier was exclusively

clean and undistorted data. The amount of data to transmit from ar-

ray components to a central clustering and classification unit is rela-

tively small as only 26 coefficients for 4 seconds of analysis time are

necessary. In a future investigation more flexible source-receiver-

setups in different reverberant environments and an evaluation on

real recorded data will be tackled.
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