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ABSTRACT

Automatic emotion recognition systems predict high-level affective
content from low-level human-centered signal cues. These systems
have seen great improvements in classification accuracy, due in part
to advances in feature selection methods. However, many of these
feature selection methods capture only linear relationships between
features or alternatively require the use of labeled data. In this paper
we focus on deep learning techniques, which can overcome these
limitations by explicitly capturing complex non-linear feature inter-
actions in multimodal data. We propose and evaluate a suite of Deep
Belief Network models, and demonstrate that these models show im-
provement in emotion classification performance over baselines that
do not employ deep learning. This suggests that the learned high-
order non-linear relationships are effective for emotion recognition.

Index Terms— emotion classification, deep learning, multi-
modal features, unsupervised feature learning, deep belief networks

1. INTRODUCTION

Emotion recognition is the process of predicting the high-level af-
fective content of an utterance from the low-level signal cues pro-
duced by a speaker. This process is complicated by the inherent
multimodality of human emotion expression (e.g., facial and vocal
expression). This multimodality is characterized by complex high-
dimensional and non-linear cross-modal interactions [1]. Previous
research has demonstrated the benefit of using multimodal data in
emotion recognition tasks and has identified various techniques for
generating robust multimodal features [2–6]. However, although ef-
fective, these techniques do not take advantage of the complex non-
linear relationship that exists between the modalities of interest, or
alternatively require the use of labeled data. In this work, we apply
deep learning techniques to provide robust features for audio-visual
emotion recognition.

Emotion recognition accuracy relies heavily on the ability to
generate representative features. However, this is a very challenging
problem. Emotion states do not have explicit temporal boundaries
and emotion expression patterns often vary across individuals [7].
This problem is further complicated by the high dimensionality of
the audio-visual feature space. Consequently, accurate modeling
generally requires a reduction of the original input feature space.
This reduction is commonly accomplished using feature selection,
a method that identifies a subset of the initial features that provide
enhanced classification accuracy [8]. However, it is not yet clear
whether it is more advantageous to select a subset of emotionally
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relevant features or to capture the complex interactions across all fea-
tures considered. In this paper, we demonstrate the effectiveness of
Deep Belief Networks (DBN) for multimodal emotion feature gen-
eration. We learn multi-layered DBNs that capture the non-linear
dependencies of audio-visual features while reducing the dimension-
ality of the feature space.

There has been a substantial body of work on feature repre-
sentation, extraction, and selection methods in the emotion recog-
nition field in the last decade. Our work is motivated by the dis-
covery of methods for learning multiple layers of adaptive features
using DBNs [9]. Research has demonstrated that deep networks
can effectively generate discriminative features that approximate the
complex non-linear dependencies between features in the original
set. These deep generative models have been applied to speech
and language processing, as well as emotion recognition tasks [10–
12]. In speech processing, Ngiam et al. [13] proposed and evaluated
deep networks to learn audio-visual features from spoken letters. In
emotion recognition, Brueckner et al. [14] found that the use of a
Restricted Boltzmann Machine (RBM) prior to a two-layer neural
network with fine-tuning could significantly improve classification
accuracy in the Interspeech automatic likability classification chal-
lenge [15]. The work by Stuhlsatz et al. [16] took a different ap-
proach for learning acoustic features in speech emotion recognition
using Generalized Discriminant Analysis (GerDA) based on Deep
Neural Networks (DNNs). While the present study is related to re-
cent approaches in multi-modal deep learning and the application of
deep learning techniques to emotion data, it focuses on non-linear
audio-visual feature learning for emotion, which has not been exten-
sively explored in the emotion recognition domain.

In the current work we present a suite of DBN models to inves-
tigate audio-visual feature learning in the emotion domain. We com-
pare two methodologies: (1) unsupervised feature learning (DBN)
and (2) secondary supervised feature selection. We first build an
unsupervised two-layer DBN, enforcing multi-modal learning as in-
troduced by [13]. We augment this DBN with two types of feature
selection (FS): 1) before DBN training to assess the benefit of fea-
ture learning exclusively from an emotionally-salient subset of the
original features and 2) after DBN training to assess the advantage
of reducing the learned feature space in a supervised context. We
compare this to the performance of a three-layer DBN model. Our
baseline is a Support Vector Machine that uses subsets of the origi-
nal feature space selected using supervised and unsupervised feature
selection. The results provide important insight into feature learning
methods for multimodal emotion data.

The results show that the DBN models outperform the baseline
models. Further, our results demonstrate that the three-layer DBN
outperforms the two-layer DBN models for emotionally subtle data.
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This suggests that unsupervised feature learning can be used in lieu
of supervised feature selection for this data type. In addition, the
relative performance improvement of the three-layer model for sub-
tle emotions suggests that these complex feature relationships are
particularly important for identifying subtle emotional cues. This is
an important finding given the challenges inherent in and need for
recognizing emotions elicited in realistic scenarios [17].

2. RELATED WORK

2.1. Feature Selection in Emotion Recognition

In this section, we discuss the feature selection techniques that are
used extensively in emotion research including: Forward Selection,
Information Gain (IG), and Principal Component Analysis (PCA).
These techniques are either supervised (forward selection and IG)
or use representations based on the linear dependencies between the
original features (PCA).

Forward feature selection is a greedy algorithm that sequen-
tially selects features that increase the overall classification accuracy.
This method has been widely used in many machine learning ap-
plications, including emotion recognition tasks [18]. Although this
method can identify a subset of good features for classification, it
may not be suitable if there are groups of features with complex
relationships due to the greedy nature of the approach. IG based fea-
ture selection methods are also commonly used in emotion recogni-
tion [19,20]. This method ranks features by calculating the reduction
in the entropy of class labels given knowledge of each feature. In
general, however, it does not search for feature interactions. Further-
more, both forward selection and IG methods require labeled data
during the feature selection process.

PCA and its variants (e.g., Principal Feature Analysis, or PFA
[21]) are broadly used in the emotion recognition literature [22–24].
PCA finds a linear projection of the base feature set to a new fea-
ture space where the new features are uncorrelated. The feature set
can be reduced to retain a majority of the variance in the original
feature space. Although this unsupervised method has been widely
used in many emotion applications, the limitation is in its linear pro-
jection of the base features, which tends to obscure the emotion con-
tent [25]. PFA is an extension of PCA. It clusters the data in the PCA
space and returns final features closest to the center of each cluster.
This results in a feature set that maintains an approximation of the
variance of the original set, while minimizing correlations between
features. We leverage IG for our proposed deep learning feature se-
lection methods, and IG and PFA for the baseline models.

2.2. Unsupervised Feature Learning and Deep Learning

Deep learning techniques (See [9] for a survey) have become in-
creasingly popular in various communities including speech and
language processing [10–12] and vision processing [26–30]. This
progress has been facilitated by the recent discovery of more effec-
tive learning algorithms for constructing DBNs in an unsupervised
context, for example exploiting single-layer building blocks such
as Restricted Boltzmann Machines (RBMs) [31]. DBNs [32] learn
hierarchical representation from data and can be effectively con-
structed by greedily training and stacking multiple RBMs.

RBMs are undirected graphical models that represent the density
of input data v ∈ RD (referred to as “visible units”) using binary
latent variables h ∈ {0, 1}K (referred to as “hidden units”). In
the RBM, there are no connections between units in the same layer,
which makes it easy to compute the conditional probabilities.

In this work, we use Gaussian RBMs that employ real-valued
visible units for training the first layer of the DBNs. We use
Bernoulli-Bernoulli RBMs that employ binary visible and hidden
units for training the deeper layers. In a Gaussian RBM, the joint
probability distribution and energy function of v and h is as follows:
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where c ∈ RD and b ∈ RK are the biases for visible and hidden
units, respectively, W ∈ RD×K are weights between visible units
and hidden units, σ is a hyper-parameter, and Z is a normalization
constant. The conditional probability distributions of the Gaussian
RBM are as follows:

P (hj = 1|v) = sigmoid

(
1

σ2
(
∑
i

Wijvi + bj)

)
(3)

P (vi|h) = N

(
vi;
∑
j

Wijhj + ci, σ
2

)
(4)

The posteriors of the hidden units given visible units (Equation 3)
form the generated features used in the classification framework.
The parameters of the RBM (W, b, c) are learned using contrastive
divergence as in [33]. We use sparsity regularization [26] to penal-
ize a deviation of expected activation of the hidden units from a low
fixed level p. Given a training set {v(1), ..., v(m)}, we include a reg-
ularization penalty of the form:
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where E[·] is the conditional expectation given the data, λ is a reg-
ularization parameter, and p is a constant that specifies the target
activation of the hidden unit hj [26].

3. DATA

3.1. IEMOCAP Data
In this work, we use the Interactive Emotional Dyadic Motion Cap-
ture (IEMOCAP) Database [34]. This database contains both mo-
tion capture markers and audio data from five pairs of actors (male-
female). The subjects’ facial movements were recorded using 53 in-
frared facial markers. The actors performed from scripted scenes and
improvised scenarios. This method of collection allowed for both
control over the affective content and naturalistic speaking styles.

The data were evaluated using categorical and dimensional la-
bels (only categorical labels are used in this study). The categorical
ground truth of the data was labeled by at least three evaluators. In
this work, we only consider utterances with labels from the follow-
ing set: Angry, Happy, Neutral, Sad. We use three types of utter-
ances in this paper: (1) prototypical data (complete agreement on
the affective state from evaluators), (2) non-prototypical data (ma-
jority agreement), and (3) a combined set of these two data types.
There are 1430 utterances in prototypical data (Angry: 284, Happy:
707, Neutral: 123, Sad: 316 utterances) and 1588 utterances in non-
prototypical data (Angry: 316, Happy: 498, Neutral: 455, Sad: 319
utterances), resulting in 3018 utterances in the combined set.
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3.2. Audio-Visual Feature Extraction

The original audio features include both prosodic and spectral fea-
tures, such as pitch, energy and mel-frequency filter banks (MFBs).
MFBs have been shown to be better discriminative features than
mel-frequency cepstral coefficients (MFCCs) in emotion recogni-
tion [35]. The original video features are based on Facial Animation
Parameters (FAP), part of the MPEG-4 standard. FAPs describe the
movement of the face using distances between particular points on
the face. They have been widely used to capture facial expressions
in the emotion recognition literature. The subset is chosen to include
emotionally meaningful movements (e.g., eye squint, smile, etc.).

The final features are statistical functionals of the raw audio-
visual features. These include mean, variance, lower and upper
quantiles, and quantile range, giving a total of 685 features. Of
these 685 features, 145 are auditory features and 540 are video fea-
tures. The features are normalized on a per-speaker basis to mitigate
speaker variation [20].

4. PROPOSED METHOD

4.1. Cross-Validation and Performance Evaluation

We use leave-one-speaker-out cross validation to ensure that the
models are not overtraining to the affective styles of a particular
speaker. We pre-train the DBN models (unsupervised) and search
for the best hyper-parameters including: sparsity parameters and the
number of final output nodes. We select our hyper-parameters using
cross validation over the training data. We fix the number of hidden
nodes of the two-layer DBNs, the sigma parameter for the first-layer
Gaussian RBMs, and the L2 regularization parameter (Section 4.3).
We select the best hyper-parameters for each data type: prototypical,
non-prototypical, and combined.

We evaluate the performance of the baseline and DBN systems
using Unweighted Accuracy (UA). UA is an average of the recall
for each emotion class [17]. The unweighted accuracy better reflects
overall accuracy in the presence of class imbalance.

4.2. Baseline Models

Our baseline models are two SVMs with radial basis function (RBF)
kernels. The SVMs do not use features generated via deep learn-
ing techniques. The SVMs have radial basis function (RBF) ker-
nels and are implemented using the Matlab Bioinformatics Toolkit.
We train four emotion-specific binary SVMs in a self-vs.-other ap-
proach. The final emotion class label is assigned by identifying the
model in which the test point is maximally far from the hyperplane
as in as in [20].

Both models employ feature selection. The first uses IG [36]
and the second uses PFA [21] feature selection (a supervised and
unsupervised feature selection technique, respectively). IG is ap-
plied to each emotion class, resulting in four sets of emotion-specific
features. Each emotion-specific SVM uses the associated emotion-
specific feature subset. The number of features is chosen over {60,
120, 180} for each data type.

We optimized the baselines using leave-one-subject-out cross-
validation for each data type (prototypical, non-prototypical, and
combined data). The parameters include the number of selected fea-
tures using IG and PFA, the value of the box constraint (C=1) for the
soft margin in the SVM, and the scaling factor (sigma=8) in the RBF
kernel.

We also compare our results with the maximal accuracy achieved
from a previous work of Metallinou et al. [37], which utilizes the
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Fig. 1. Illustration of proposed models: (a) DBN2, (b) FS-DBN2,
(c) DBN2-FS, and (d) DBN3.

same IEMOCAP database as our work and introduces a decision-
level Bayesian fusion over models using face, voice, and head
movement cues. Although Metallinou’s work used a different subset
of the IEMOCAP database, this comparison supports the strong
performance of our proposed method.

4.3. Deep Belief Network Models

We experiment with four different DBN models in order to explore
different non-linear dependencies between audio and motion-capture
features. We also assess the utility of feature selection methods in
these deep architectures (Figure 1).

Our basic DBN is a two-layer model and is a building block for
the other variants. It learns the audio and video features separately
in the first hidden layer. The learned features from the first layer
are concatenated and used as the input to the second hidden layer as
introduced in [13]. We call this the DBN2 model (Figure 1(a)).

The other three DBN models are based on DBN2. Two involve
feature selection and one is a three-layer DBN model. The two-
layer models use supervised feature selection (IG) either prior to or
post the unsupervised pre-training. The three-layer model reduces
the feature dimensionality using a third RBM layer, invoking unsu-
pervised feature learning. Thus, the three-layer model captures ad-
ditional high-order non-linear dependencies of all features, whereas
the models employing supervised feature selection use only emo-
tionally salient features. The variants are defined as follows:

• FS-DBN2 is a two-layer DBN with feature selection prior to
the training of the DBN2 model (Figure 1(b)).

• DBN2-FS is a two-layer DBN with feature selection on the
final RBM output nodes (Figure 1(c)).

• DBN3 is a three-layer DBN that stacks an additional RBM
on the second-layer RBM output nodes of the DBN2 model
(Figure 1(d)).

The number of hidden units in the first layer is approximately
1.5x overcomplete for each audio feature (300 units from 145 audio
features) and video feature (700 units from 540 video features), re-
sulting in 1000 concatenated first layer hidden units. The number of
second hidden units is fixed at 200 for DBN2, DBN2-FS, and DBN3.
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Table 1. Unweighted classification accuracy (%) for combined, non-
prototypical, and prototypical data

Baseline Proposed DBNs
IG PFA DBN2 DBN2-

FS
DBN3 FS-

DBN2
Combined 64.42 64.45 65.25 66.12 65.71 65.89
Non-Prot 55.81 55.99 56.89 56.97 57.70 56.07
Prot 73.38 70.02 70.46 72.96 73.78 72.77

For FS-DBN2, the number of second hidden units is fixed to 150 be-
cause the number of visible units is smaller compared to the other
three DBN models.

The sparseness parameters are selected using leave-one-speaker-
out cross-validation, while all other parameters (including hidden
layer size and weight regularization) are kept fixed (See Section 4.1
for details). Since the number of video features is larger than the
number of audio features, we select the sparsity parameters of bias
for audio data and video data over {0.1, 0.2} and {0.02, 0.1}, re-
spectively. Also, the sparsity parameters of λ are selected over {2,
6, 10} for audio features, while λ sparsity parameters are fixed at
5 for video features. Our preliminary results demonstrated that the
λ value for the video features did not noticeably affect the results.
The number of features selected at the final level (DBN2-FS) and
the number of hidden units at the final level (DBN3) are selected
over {50, 100, 150}.

For FS-DBN2, a total of 100 audio features and 200 video fea-
tures are chosen using IG. We first pre-train a sparse RBM with 100-
200 nodes for the audio features and 200-600 nodes for the video
features. We select the sparsity parameters of bias over {0.1, 0.5}
for each RBM. λ is fixed as 5. Next, we concatenate the learned fea-
tures and pre-train a first layer of DBN with 800 output nodes and
the second layer with 150 nodes (Bernoulli-Bernoulli).

The output of each DBN is classified using the same SVM struc-
ture used in the baseline (Section 4.2).

5. RESULTS AND DISCUSSION

A summary of the emotion classification results can be seen in Ta-
ble 1. The DBN models for the combined data achieve UAs rang-
ing from 65.25% (DBN2) to 66.12% (DBN2-FS). All DBN models
outperform the baseline models (the two baseline models perform
comparably). The performance gap between the maximal UAs of
proposed models and the PFA baseline is 1.67%.

The DBN models for the non-prototypical data achieve accu-
racies ranging from 56.70% (FS-DBN2) to 57.70% (DBN3). All
DBNs outperform the baseline models (which again perform com-
parably). The performance gaps between the UAs of proposed mod-
els and baseline models range from 1.71% to 1.89%. We obtain a
slight performance gain when using DBN3 compared to both DBN2-
FS and FS-DBN2 for subtle or non-prototypical utterances (0.73%
and 1.63% increase, respectively). This result is important given
that the DBN3 model does not use any labeled data (unsupervised
feature learning), whereas the FS-DBN2 model learns a new set of
features from a previously identified subset of emotionally salient
features and the DBN2-FS invokes feature selection at the output.
This demonstrates that we can effectively use unsupervised feature
learning, rather than supervised feature selection, for emotion recog-
nition, even for emotionally subtle utterances (non-prototypical).

The DBN models for the prototypical data achieve accuracies
ranging from 70.46% (DBN2) to the maximum of 73.78% (DBN3).
The performance gap between the maximal UAs of the proposed

models and maximal UAs of the baseline models (73.38% with IG)
is 0.40%. The baseline models themselves achieve differing lev-
els of accuracy; the IG baseline outperforms the PFA baseline by
3.36%. This may suggest that in emotionally clear utterances, super-
vised feature selection (emotion-specific IG) is preferable to unsu-
pervised feature selection (PFA). The accuracy of the DBN3 model
indicates that unsupervised feature learning can achieve compara-
ble performance to supervised feature selection for emotionally clear
utterances. Further, the DBN3 outperforms unsupervised feature se-
lection (PFA baseline) by 3.76%, highlighting the potential impor-
tance of feature learning rather than unsupervised feature reduction
for emotionally clear data.

The deep learning method performs comparably to the previous
work of Metallinou et al. [37], 62.42%. Direct comparisons are not
possible due to differences in the data subsets considered.

6. CONCLUSIONS

In this work, we investigate the utility of deep learning techniques
for unsupervised feature learning in audio-visual emotion recogni-
tion. Our results demonstrate that DBNs can be used to generate
audio-visual features for emotion classification, even in an unsuper-
vised context. The comparison of the classification performances
between the baseline and the proposed DBN models demonstrate
that it is important to retain complex non-linear feature relationships
(using deep learning techniques) in emotion classification tasks. The
strongest performance gain is observed in the non-prototypical data.
This is important in applications of automatic emotion recognition
systems where emotional subtlety is common.

In our future work, we will investigate the comparative advan-
tage of deep learning techniques with additional emotion corpora.
We will also investigate deep modeling in the context of dynamic
feature generation. Finally, the visualization of complex dependen-
cies between either features or weights between hidden nodes of the
DBNs may open a new gateway for the interpretation of audio-visual
emotion data.
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[6] M. Pantic, G. Caridakis, E. André, J. Kim, K. Karpouzis, and S. Kol-
lias, “Multimodal emotion recognition from low-level cues,” Emotion-
Oriented Systems, pp. 115–132, 2011.

[7] C.N. Anagnostopoulos, T. Iliou, and I. Giannoukos, “Features and clas-
sifiers for emotion recognition from speech: a survey from 2000 to
2011,” Artificial Intelligence Review, pp. 1–23, 2012.

[8] M. El Ayadi, M.S. Kamel, and F. Karray, “Survey on speech emotion
recognition: Features, classification schemes, and databases,” Pattern
Recognition, vol. 44, no. 3, pp. 572–587, 2011.

[9] Y. Bengio, “Learning deep architectures for AI,” Foundations and
Trends in Machine Learning, vol. 2, no. 1, pp. 1–127, 2009.

[10] N. Morgan, “Deep and wide: Multiple layers in automatic speech
recognition,” Audio, Speech, and Language Processing, IEEE Trans-
actions on, vol. 20, no. 1, pp. 7–13, 2012.

[11] A. Mohamed, G.E. Dahl, and G. Hinton, “Acoustic modeling using
deep belief networks,” Audio, Speech, and Language Processing, IEEE
Transactions on, vol. 20, no. 1, pp. 14–22, 2012.

[12] G. Sivaram and H. Hermansky, “Sparse multilayer perceptron for
phoneme recognition,” Audio, Speech, and Language Processing, IEEE
Transactions on, vol. 20, no. 1, pp. 23–29, 2012.

[13] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A.Y. Ng, “Multi-
modal deep learning,” in Proceedings of the 28th International Confer-
ence on Machine Learning (ICML), 2011, pp. 689–696.

[14] R. Brueckner and B Schuller, “Likability classification - a not so deep
neural network approach,” in Proceedings of INTERSPEECH, 2012.

[15] B. Schuller, S. Steidl, A. Batliner, E. Nöth, A. Vinciarelli, F. Burkhardt,
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