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ABSTRACT

Emotion recognition is the process of identifying the affective char-
acteristics of an utterance given either static or dynamic descriptions
of its signal content. This requires the use of units, windows over
which the emotion variation is quantified. However, the appropri-
ate time scale for these units is still an open question. Traditionally,
emotion recognition systems have relied upon units of fixed length,
whose variation is then modeled over time. This paper takes the view
that emotion is expressed over units of variable length. In this paper,
variable-length units are introduced and used to capture the local
dynamics of emotion at the sub-utterance scale. The results demon-
strate that subsets of these local dynamics are salient with respect
to emotion class. These salient units provide insight into the natu-
ral variation in emotional speech and can be used in a classification
framework to achieve performance comparable to the state-of-the-
art. This hints at the existence of building blocks that may underlie
natural human emotional communication.

Index Terms— Emotion classification, emotion representation,
emotion profile, emotogram, emotion unit

1. INTRODUCTION

Emotion classification systems rely heavily on perceptually evalu-
ated databases. However, the human process of emotion evaluation
is still not well understood. When classifying emotion, algorithms
generally either process sentence-level data or use data windowed
over fixed units in time. However, it is not clear that humans, our
ground truth, process emotion in this manner. Therefore, these fixed
time units may not be appropriate for modeling affective data. This
paper discusses methods to: (1) identify variable-length units that
capture salient information relating to local dynamics in emotional
speech and (2) understand how to use sub-utterance dynamics to
identify utterance-level emotion labels.

The importance of local cues has been well studied in human
perception, for example [1, 2], which highlight the interaction be-
tween local and global cues. The current work investigates the ben-
efit of estimating salient local (sub-utterance) emotion dynamics via
variable-length units. For example, consider a portion of the utter-
ance that displays increasing evidence of anger over multiple frames.
A unit that can capture this trend may be a stronger indication of
anger than any individual frame. The goal is to capture these pat-
terns and to use them in classification to understand how emotion
change influences perception.

Recent work in emotion and behavior modeling has focused
on methods to approximate the human evaluation process when
classifying data, specifically the interaction between context and
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salience [3]. The work of Lee et al. [4] approximated humans’
ability to both identify salient regions of interest and to integrate
cues over time. They found that the utility of these two methods
depended on the type of behavior being modeled. The work of
Wöllmer et al. [5] and Metallinou et al. [6] have closely examined
how context can be used in the modeling process. Context has also
been studied in dialogue systems [7]. Further, variations of dynam-
ics have been attributed to changes in emotion perception, notably
in the music domain [8, 9]. In our previous work, we looked at
modeling the intra-utterance dynamics of an utterance using Hidden
Markov Models (HMM) [10]. We found that this tracking could
effectively capture the utterance-level label and that the choice of
unit size impacted accuracy (also demonstrated in [11]). How-
ever, this dynamic assessment could not provide insight into the
local building blocks of emotional speech due to the restrictions
of state-based modeling. The current work investigates alternative
methods to approximate the dynamic nature of emotion by allowing
for variable-length units, identifies emotionally salient regions using
these units, and presents methods to classify the affective label of an
utterance by accumulating local salient evidence.

This problem is approached by first estimating the short-time
affective content of the data, creating an n-dimensional character-
ization where n is the number of affective cues detected. These
n-dimensional estimates are aggregated into a set, called an emo-
togram. The emotogram describes how these cues ebb and flow
dynamically over an utterance [12]. The emotograms are automati-
cally segmented into variable-length n-dimensional sub-trajectories.
The sub-trajectories are clustered to create a discrete set of Emotion
Units (EU). The salience of each EU is calculated. The emotional
relevance of EU saliency is validated in a classification framework.

This framework is a novel approach to learning variable-length
units and their relevance to emotion perception. It uses trajec-
tory partitioning [13] to identify variable-length emotion units and
salience detection [14] to natively identify the salience of the esti-
mated affective flow. The results show that EUs contain different
levels of emotion salience, demonstrating that certain EUs are more
strongly associated with particular emotion classes (e.g., a rise in
anger strongly suggests the class of “angry”). The classification
results demonstrate that this method can achieve comparable results
to the state of the art [15]. These findings suggest that there may
exist basic building blocks that underlie expressions of emotion.

2. DESCRIPTION OF DATA
The data used in this study are from the USC Interactive Emotional
Motion Capture Database (IEMOCAP). The database was collected
using mixed-gender pairs of actors performing from scripts and im-
provised scenarios. The database contains approximately 10 hours
of data recorded using audio, video, and motion-capture. In this
study the data are restricted to utterances that contain both audio and
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motion-capture (approximately five hours due to recording condi-
tions). The data were evaluated using categorical labels (i.e., angry,
happy, neutral, sad, frustrated, excited – merged with happy, dis-
gust, fear, surprise, other) and dimensional labels. In this study only
categorical labels were used. The evaluator agreement over the cat-
egorical labels was 0.40 (given majority consensus). After merging
the classes of happiness and excitement the agreement increased to
0.48. The evaluation ambiguity highlights the emotional subtlety of
the dataset. The utterance lengths vary from 0.5 seconds to 33.25
seconds. This variation in length provides a great opportunity to un-
derstand how evaluators make assessments over utterances of differ-
ent lengths. The utterances used in this study had majority ground-
truth labels of: angry (584), happy (1,153), neutral (515), and sad
(571). There were a total of 2,823 utterances.

The audio features used in this database include: pitch, energy,
and Mel Filterbanks, extracted using Praat [16]; features demon-
strated to be very effective in this domain [12, 17]. The statistics ex-
tracted from these features include mean, standard deviation, lower,
upper, and quantile range. The statistics for pitch were extracted
only over the non-zero portions of the signal. Initial and trailing si-
lence were approximated and removed by discounting portions of
the utterances before the first non-zero pitch value and after the last
non-zero pitch value. The motion-capture data includes the x-y-z po-
sitions of 53 facial markers. The motion-capture features are based
on Facial Animation Parameters (FAP, discussed in [18]). FAPs de-
scribe the distances between points on the face. The specific features
are described in more detail in [19].

The original feature set consists of 685 features. This feature set
size was reduced using the Wilcoxon test, a nonparametric test that
compares the centers of two populations (implemented using rank-
features in Matlab). Emotion-specific features sets were selected in
a self vs. other paradigm (e.g., the features that best separate anger
from not anger). This resulted in four emotion-specific feature sets
to be used in a binary self vs. other classification framework. The
number of features retained was determined using a parameter sweep
over the training data (Section 3). The number of features varied
across folds, but was either 180 (3/10 speakers) or 200 features.

3. METHODS
This section describes methods to (1) estimate emotion flow via
emotograms, described in [10, 12, 19], (2) estimate variable-length
units that capture salient changes in affective flow, and (3) detect
emotion class using the salience of these estimated units. All al-
gorithms discussed in this paper use leave-one-subject-out cross-
validation. The training data (nine speakers) are entirely subject-
disjoint from the test data for each fold. The parameters for each
test speaker are selected using leave-one-subject-out cross-validation
over the nine training speakers; resulting in nine parameter sets. The
final parameter set is the median of the nine best parameter sets. This
parameter set is applied to the unseen test data.

Sentence-level emotion dynamics are captured via emotograms
[10, 12]. The emotogram for an utterance is the set of short-
time affective estimates calculated over windowed portions of
that utterance. These short-time estimates are called Emotion
Profiles (EP) [19]. Each EP describes the presence or absence
of a set of emotional cues over a windowed portion of the utter-
ance. The idea behind the emotogram methodology is that emotion
can be better understood if we understand how high-level affec-
tive cues ebb and flow over an utterance. More specifically, EPs
are n-dimensional vectors containing the classifier-derived confi-
dence, C, in the presence or absence of each emotion in the set
of emotional cues. The EP for utterance i can be described as,
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Fig. 1. The emotogram for an angry utterance. The white represents
confidence in the presence of an emotion while black represents con-
fidence in the absence of that emotion. The vertical slices are the
estimates of emotion at each 0.25 second window. The dynamics of
the utterance can be viewed by observing how the estimated pres-
ence and absence of the emotional cues ebb and flow over time.

EPi = {Ck}, k ∈ {angry, happy, neutral, sad}, for a four-
dimensional profile (higher-dimensional extensions have been ex-
plored [20]). EPs are estimated using n self vs. other binary Support
Vector Machine (SVM) classifiers (here, n = 4). The SVM classi-
fiers use radial basis function (RBF) kernels with σ = 9, selected
across all speakers using the parameter sweep. Figure 1 shows an
emotogram for an angry utterance. The vertical slices in the figure
are EP estimates. Each vertical slice of the emotogram describes the
presence (white) or absence (black) of each of the affective cues. All
slices are normalized (z-normalization) on a per-speaker basis. In
this paper, the emotograms are composed of EPs calculated using a
sliding window of 0.25 seconds (with half a window overlap). This
results in a set of four Emotion Trajectories for each utterance.
An emotion trajectory (or “trajectory”) is an estimate of how each
emotion cue varies over the utterance (e.g., anger variation can be
seen in the top line of Figure 1).

3.1. Trajectory Segmentation
The four emotion trajectories provide a dynamic description of the
nature of estimated emotion flow over an utterance. These dynam-
ics are used to identify salient regions of the data. These salient
regions can then be used for classification or to build a better under-
standing of the dynamics of emotion expression. Ultimately, it is not
clear that the basic building blocks of the emotogram, the fixed win-
dow estimates of emotion content, provide the only available unit
type for saliency modeling. For example, consider pitch modeling.
Statistics of pitch are commonly used features in emotion classifica-
tion. However, the pitch contour, or how pitch changes over time,
has also been shown to be an effective feature for emotion classifica-
tion [21,22]. In this work, salient static emotogram slices (an analog
to the pitch statistics) are compared to salient emotogram dynam-
ics (an analog to the pitch contour). Characteristic emotion dynam-
ics may evolve over different time scales. Consequently, capturing
accurate emotion dynamics may require the identification of short
variable-length regions of constant emotion change. These variable-
length regions (units) are identified using TRACLUS, a trajectory
segmentation method presented in [13]. The goal of this work is to
uncover these natural, perceptually meaningful, variable-length units
to develop an understanding of the dynamics of emotion expression.

The trajectory segmentation is based on minimum description
length (MDL), introduced in [23]. MDL attempts to balance two
competing constraints: (1) L(H) – the length, in bits, of the descrip-
tion of the hypothesis, H and (2) L(D|H) – the length, in bits, of
the description of the data when encoded with the help of the hy-
pothesis. The goal is to find the best hypothesis, H , that will explain
the data, D, while minimizing the sum of L(H) and L(D|H). The
partitioning is decided using two values,MDLpar andMDLnopar ,
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Fig. 2. This figure demonstrates the process of segmenting a trajec-
tory. The original five points are: {EPi}, 1 ≤ i ≤ 8. The question
is whether to retain the original five point description (black line)
or to form a new line with a start/end points of EPc,1 and EPc,2
(dotted line). The dotted line trajectory is an approximation of the
original black trajectory.

the cost of partitioning and the cost of not partitioning, respectively.
MDLpar is the sum of L(H) and L(D|H). MDLnopar is merely
L(H). If the cost of partitioning the data is greater than the cost of
not partitioning the data, then the previous data point is assigned as
a characteristic point (CP). The goal is to reduce the size of the tra-
jectory from the number of points in the original trajectory to the set
of CPs, |CP | < |Trajectory|.

For example, consider an utterance whose emotogram contains
eight EPs (EP1...EP8, see Figure 2). During partitioning, the al-
gorithm must decide if the original trajectory (black lines in the fig-
ure) specified by the first five EPs should be retained or if instead a
simpler line (dotted) could be used as an approximation to this emo-
tional trajectory. The approximated dotted-line trajectories form the
sub-trajectories that are discussed throughout the remainder of this
paper. In the example, the algorithm returns that the CP locations
(cj) are at window 1, 5, and 8 (EPc1 , etc.). Thus, there are two new
sub-trajectories: (1) EPc1 to EPc2 (c1 = 1, c2 = 5) and (2) EPc2
to EPc3 (c2 = 5, c3 = 8). These sub-trajectories capture change in
the estimated presence/absence of the emotional cues. Thus, these
sub-trajectories are an estimate of local emotion dynamics.

The data, D, is the original segment of the trajectory (e.g., black
line: EP1 to EP2 in Figure 2). H refers to the proposed sub-
trajectory (e.g., dotted line: EPc1 toEPc2 or unchanged black line).
The components of the MDL assessment, L(H) and L(D|H) are
calculated as in Equations 1 and 2. In the case ofMDLnopar , L(H)
is the sum of the length of each component of the black trajectory (as
seen in Equation 1). In the case of MDLpar , L(H) is the length of
the new single component of the trajectory (dotted line). L(D|H)
describes the aggregated distance between each of the original black
line trajectory components and the proposed dotted line trajectory
segmentation (e.g., distance between EP2EP3 and EPc1EPc2 ).
The distance is calculated using angular and perpendicular distances.
Additional details can be found in [13]. The result of this process is
a set of segmented trajectories for each emotogram.

L(H) =

cj+1−1∑
k=cj

log2[len(EPkEPk+1)] (1)

L(D|H) =

cj+1−1∑
k=cj

{log2[d⊥(EPcjEPcj+1 , EPkEPk+1)+

log2[dθ(EPcjEPcj+1 , EPkEPk+1)]} (2)

3.2. Salience Modeling
The goal of this work is to identify EUs and to demonstrate that they
contain emotionally salient detail. This requires a discrete set of
EUs. Discrete labels were assigned to each sub-trajectory using hier-
archical clustering (Matlab, PRTools [24]) rather than the trajectory
clustering methods of [13]. Hierarchical clustering is a bottom-up
approach that merges the two most similar clusters at each stage. The
algorithm terminates either with a single cluster or at a pre-specified
number of clusters. In this paper the number of clusters was cho-
sen using the parameter sweep method (Section 3). The number of
clusters varied from 100 to 200 across the folds. The number of
sub-trajectories in the training data were down-sampled by a factor
of 100 to mitigate computational complexity (43,252 units to 433
units). Thus, hierarchical clustering can be seen as seeding the ini-
tial clusters. The features for clustering included the parallel, per-
pendicular, and angular distances between segments, demonstrated
effective in [13]. The remaining training data and held out test data
were assigned to the cluster of the closest training data point.

The emotional relevance of the EUs was assessed using a
method proposed by [14] for modeling the affective salience of
words in call center databases. The authors identified words as-
sociated with positive and negative affective classes. Here, the
“words” are the variable-length clustered EUs. Salience was cal-
culated in a self-vs. other paradigm (in the following descrip-
tions, the class of anger will be discussed, the same strategy
holds for each emotion class). The emotion-specific salience
for any EU, sal(EUi,k) is the product of the conditional prob-
ability describing the presence of the unit, EUi, given emotion
class k: p(EUi|ek), k ∈ {angry, not angry}, and the mu-
tual information, log(p(EUi|ek)/p(ek)). The general salience
of each EU, gsal, is the sum of the emotion-specific saliences,
gsal(EUi) =

∑
k sal(EUi,k). EUs with a gsal less than a speci-

fied threshold were treated as filler and were discarded. The thresh-
old was set as a quantile of gsal, determined using the parameter
sweep method; it varied between 0.1 and 0.9 quantiles.

The utterances were classified using accumulated salience, the
amount of emotion-specific evidence an evaluator is estimated to re-
ceive while observing an utterance. It is the sum of the emotion-
specific saliences for EUs with gsal greater than the threshold. This
results in a four-dimensional saliency estimate for each test utter-
ance. The class label is assigned based on the highest accumulated
salience. The EU saliency model will be referred to as “EU-Sal.”

3.3. Alternative Models
The first model uses the saliency modeling described in Section 3
applied to quantized and coded versions of the individual EP slices
(e.g., {EPt}t=TN

t=0 ) of the original unsegmented emotogram. This
can be seen as salient evidence spotting and accumulation. The
four-dimensional EP slices are quantized into bins using the quan-
tiles at 0.2 and 0.8 and the resulting binned slices are coded as 1
– 81 based on bin value (e.g., mid-angry, no-happy/neutral/sad is
quantized into bins: 2111 and coded as: code 28) [12]. This pro-
duces the one-dimensional emotograms needed for saliency detec-
tion. These descriptors are referred to as raw units (RU). The RU
saliency model will be referred to as “RU-Sal.” The RU-Sal model
assumes that windowed short-term evidence provides important cues
regarding the high-level label of an utterance (e.g., strong evidence
for the presence of anger over a particular window).

The second model uses Hidden Markov Models (HMM) to cap-
ture the dynamics of the four-dimensional EP slices via a three-state
model with left-to-right topology, described in [10]. This strategy
assumes that utterance-level dynamics contribute to overall emotion
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Sent. EU-Sal RU-Sal HMM
Length UW W UW W UW W

6 - 33.25 71.41 71.06 69.95 71.37 70.64 71.80
3 - 6 65.10 66.12 65.00 66.40 63.94 67.42

1.5 - 3 59.34 60.61 57.68 59.60 60.71 63.32
0.5 - 1.5 59.01 60.36 58.99 59.91 63.38 64.58
Overall 63.80 64.54 62.34 64.16 65.04 66.17

Table 1. Classification results for the presented systems (in percent-
ages). UW Acc. stands for unweighted accuracy (an average of the
four emotion class accuracies). W stands for weighted accuracy.

perception and that users integrate all emotional information when
making an assessment. Comparable performance between the EU-
Sal and HMM methods would suggest that certain local dynamics
(in addition to utterance-level global dynamics) are correlated with
class label. In [10] varied window sizes were analyzed, in the current
work, the window size is restricted to 0.25 seconds to permit HMM
modeling across all sentence lengths (0.5 – 33.25 seconds).

3.4. Model Comparison
The RU-Sal model is predicated on the hypothesis that salient local
evidence can be accumulated over the course of each test utterance
to form an estimate of emotion class. The EU-Sal model asserts
that salient local dynamics also contain emotionally relevant cues.
The HMM model asserts that global dynamics can be used for clas-
sification. These assertions are tested across utterances of different
lengths to understand the trade-offs between local and global affec-
tive cues. The EU- and RU-Sal models are expected to perform well
on long utterances as these utterances often contain natural emotion
fluctuations over their span. Evaluators observe these fluctuations
and produce an assessment of the high-level content of these clips.
The EU-Sal and RU-Sal methods emulate this, identifying salient
dynamics and salient evidence over the course of an estimate. There-
fore, even given noisy estimates of the affective content, the expec-
tation is that it is possible to identify at least a subset of the salient
evidence. It is expected that as the length of an utterance decreases
the availability of numerous noise-free estimates also decreases and
consequently the opportunity to recognize salient evidence and dy-
namics similarly decreases. The HMM experiments are expected
to perform more accurately on the shorter utterances because the
unavailability of precise evidence will be mitigated by the overall
affective dynamics of the utterance.

4. RESULTS AND DISCUSSION

The results include weighted and unweighted accuracy calculated
over each fold. Unweighted accuracy is the average of the four
emotion-specific recall measures for each fold. Weighted accuracy is
the fraction of the number of utterances classified correctly over the
total number of utterances for each fold. The presented accuracies
are the average over all ten folds.

The results demonstrate that the overall accuracies across the
three models are similar. Previous research demonstrated the effi-
cacy of global dynamics for emotion classification [10]. The cur-
rent work suggests that local dynamics can also be effectively used
for emotion classification. For utterances greater than six seconds
in length, EU-Sal is the most effective technique (UW: 71.41), fol-
lowed by HMM (UW: 70.64) then RU-Sal (UW: 69.95). For utter-
ance lengths of 3-6 seconds, both the RU-Sal and EU-Sal methods
outperform the HMM (UW), 65.10, 65.00 and 63.94, respectively.
For utterance lengths below three seconds HMMs consistently out-
perform the RU-Sal and EU-Sal models.
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Fig. 3. A subset of the salient segments for presence/absence of
anger. Only the angry dimension is shown.

In addition to classification, EU-Sal provides a method to un-
derstand the local dynamics that contribute to the perception of a
particular class. In the EU-Sal method, every four-dimensional emo-
togram sub-trajectory is assigned to a cluster. These sub-trajectories
can be visualized to gain insight into the types of local dynamics that
are salient. Figure 3 presents the general salience of a random subset
of emotionally salient trajectories for the differentiation of angry and
not angry. The figure shows only the angry EP dimension. The black
segments are salient with respect to the class “angry.” The green dot-
ted segments are salient with respect to the class “not angry.” The
salient segments for angry are generally those that provide strong
evidence for anger. Conversely, the salient segments for not angry
are generally those that describe either low evidence or a decrease in
evidence for the class of anger.

In the final analysis, the salience of the variable-length units is
discussed. Figure 4 displays the proportion of EUs of a given length
(y-axis) that are salient to a particular degree (x-axis). The figure
demonstrates that the salient segments of any length are a fraction
of the total number of EUs of that length. This finding is reason-
able given the thresholding that governs whether or not a segment
is considered salient. However, the figure shows that all of the unit
lengths contain salient members, suggesting that the variable-length
units are important for describing local emotion dynamics.

5. CONCLUSIONS

This paper presents a novel method for natural variable-length unit
detection in affective communication. The results demonstrate that
variable-length units can effectively capture local dynamics and can
be used in a classification framework to achieve results comparable
to the state-of-the-art on the IEMOCAP database (62.42% [15]). The
results also show that these units can be used to interpret the emo-
tional dynamics of affective utterances. Future work includes inves-
tigating the presence of patterns that guide the ordering of these units
to gain insight into the structure that underlies emotional speech.
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Fig. 4. The relationship between segment length and salience across
the emotion classes. The y-axis represents the proportion of EUs of
a particular length that have the salience described by the x-axis.
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[6] A. Metallinou, M. Wöllmer, A. Katsamanis, F. Eyben,
B. Schuller, and S. Narayanan, “Context-sensitive learning for
enhanced audiovisual emotion classification,” IEEE Trans. on
Affective Computing, vol. 3, no. 2, pp. 184–198, 2012.

[7] J. Liscombe, G. Riccardi, and D. Hakkani-Tür, “Using context
to improve emotion detection in spoken dialog systems,” in
Interspeech, Sept. 2005, pp. 1845–1848.

[8] S.B. Kamenetsky, D.S. Hill, and S.E. Trehub, “Effect of tempo
and dynamics on the perception of emotion in music,” Psy-
chology of Music, vol. 25, no. 2, pp. 149–160, 1997.

[9] E.M. Schmidt and Y.E. Kim, “Modeling musical emotion dy-
namics with conditional random fields,” ISMIR, Miami, FL,
2011.

[10] E. Mower and S. Narayanan, “A hierarchical static-dynamic
framework for emotion classification,” in IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2011, pp. 2372–2375.

[11] B. Schuller and L. Devillers, “Incremental acoustic valence
recognition: an inter-corpus perspective on features, match-
ing, and performance in a gating paradigm,” in Interspeech,
Makuhari, Japan, Sept. 2010, pp. 801–804.

[12] E. Mower Provost and S. Narayanan, “Simplifying emotion
classification through emotion distillationn,” in Proceedings
of APSIPA Annual Summit and Conference, Hollywood, CA,
Dec. 2012.

[13] J.G. Lee, J. Han, and K.Y. Whang, “Trajectory clustering: a
partition-and-group framework,” in Proceedings of the 2007
ACM SIGMOD international conference on Management of
data. ACM, 2007, pp. 593–604.

[14] C.M. Lee and S. Narayanan, “Towards detecting emotions in
spoken dialogs,” IEEE Transactions on Speech and Audio Pro-
cessing, vol. 13, no. 2, pp. 293–302, 2005.

[15] A. Metallinou, S. Lee, and S. Narayanan, “Decision level com-
bination of multiple modalities for recognition and analysis
of emotional expression,” in IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), Dallas,
Texas, March 2010.

[16] P. P. G. Boersma, “Praat, a system for doing phonetics by com-
puter,” Glot international, vol. 5, no. 9/10, pp. 341–345, 2002.
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