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ABSTRACT

Human emotion changes continuously and sequentially. This re-
sults in dynamics intrinsic to affective communication. One of the
goals of automatic emotion recognition research is to computation-
ally represent and analyze these dynamic patterns. In this work, we
focus on the global utterance-level dynamics. We are motivated by
the hypothesis that global dynamics have emotion-specific variations
that can be used to differentiate between emotion classes. Conse-
quently, classification systems that focus on these patterns will be
able to make accurate emotional assessments. We quantitatively rep-
resent emotion flow within an utterance by estimating short-time af-
fective characteristics. We compare time-series estimates of these
characteristics using Dynamic Time Warping, a time-series similar-
ity measure. We demonstrate that this similarity can effectively rec-
ognize the affective label of the utterance. The similarity-based pat-
tern modeling outperforms both a feature-based baseline and static
modeling. It also provides insight into typical high-level patterns
of emotion. We visualize these dynamic patterns and the similari-
ties between the patterns to gain insight into the nature of emotion
expression.

Index Terms— emotion classification, emotion dynamics, emo-
tion structure, multimodal, dynamic time warping, dynamic pattern

1. INTRODUCTION

Interest in automatic emotion recognition has grown rapidly in the
past few decades. This growth has fueled the development of quan-
titative models of human emotion dynamics, which augment our
interpretation and understanding of these complex expressions. A
proper understanding of the dynamic nature of emotion will lead to
modeling advancements and a greater understanding of the structure
that underlies our affective communication. One of the most com-
mon methods for assessing global emotion dynamics is using Hid-
den Markov Models (HMMs). This technique gained popularity in
the speech recognition community and has been effectively used in
the emotion recognition community as well. However, in this work,
we take a different approach and focus on methods that will provide
interpretable descriptions of emotion dynamics. We quantify how
emotion flows over an utterance and demonstrate how patterns of
this flow can effectively be used to predict an emotion state.

Our work is motivated by process-oriented research in Psychol-
ogy. This approach uses statistical models to forecast or predict psy-
chological behaviors of a human over his/her life span [1-4]. This
approach provides a framework to assess human-centered fluctua-
tion. Human emotion is, by its very nature, a variant signal, even
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over very short time intervals (with respect to the life span of an in-
dividual). We hypothesize that certain dynamic patterns may under-
lie emotional communication. Our goal is to identify these patterns,
which we call “flow patterns,” and use them in an emotion classi-
fication framework. We further hypothesize that the salient charac-
teristics of these patterns are the long-term utterance-level dynamics
rather than the short-term fluctuations. We expect to see common
patterns repeating over utterances of the same emotion class. We
propose a simple quantitative method to model the flow patterns and
demonstrate how these patterns of estimated emotion dynamics fur-
thers our understanding of human emotion expression. We estimate
emotion flow by extracting features related to emotion dynamics.
The features are sequential short-term estimates of emotion states
extracted using methods introduced in [5,6]. Each estimate describes
the utterance in terms of blends of emotional cues. Our previous
work demonstrated that sequential emotion estimates can be used to
classify and identify affective states in a dynamic classification set-
ting [6]. In this work we present an emotion modeling technique
that leverages the intra-utterance flow patterns to capture the emo-
tional similarity between utterances. This method natively provides
insights into the flow patterns and their relationship to emotion state.

There is a large body of work in tracking feature-level emo-
tion structure, including HMMs and Bidirectional Long Short-Term
Memory (BLSTM) systems. The BLSTM models are neural net-
works with memory blocks that can capture variable amount of con-
text [7,8]. These models are effective in capturing long-range con-
text. However, this context is firmly tied to the multiplicative gate
units and may be difficult to interpret [9]. In these methods, and
commonly within the community, the common practice for mod-
eling emotion dynamics considers the feature-level fluctuations of
the signal [10, 11]. We have demonstrated that short-term estimates
of affective flow could also be modeled dynamically using HMMs.
This suggested that emotion has definable structure [6]. However,
our understanding of these underlying dynamics was restricted by
the limitations of a finite state space [6]. In this paper we provide
a framework for dynamic modeling of emotion that provides inter-
pretable descriptions of emotion expressions by explicitly focusing
on utterance-level dynamics.

Our proposed method captures emotional similarity by estimat-
ing time-series similarity between flow patterns of different utter-
ances. This allows us to explicitly take longer-range temporal de-
pendencies into account because our method is focused on variation
over the entire utterance (rather than frame level change). We first
estimate short-term emotion content over small time windows for
each utterance, which approximates emotion dynamics. We calcu-
late the similarity between these estimated dynamics using Dynamic
Time Warping (DTW). Unlike HMM, DTW does not make any sta-
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Fig. 1. lllustration of the proposed method

tistical assumptions about the intrinsic model. Instead, it directly
computes the flow pattern similarity between the unknown utterance
and known time-series data [12]. We use this DTW similarity mea-
sure in an automatic emotion classification system (Figure 1).

The novelty of this work is in its focus on interpretable utterance-
level dynamic modeling, which furthers our understanding of the
structure underlying emotional utterances. The results demonstrate
that this modeling is effective for identifying emotion state. The
maximal accuracy of flow pattern modeling of estimated emotion in
DTW similarity-based classification system is 64.40% (unweighted
accuracy). This accuracy is greater than that of a baseline model
that captures the flow patterns at the feature level as well as a static
model, 64.02% and 61.20%, respectively. Further it performs com-
parably to the state-of-the-art results on a different subset of the same
database [13]. This suggests that flow pattern of temporal emotion
dynamics provide useful information for emotion recognition.

2. DATA

We use the Interactive Emotional Dyadic Motion Capture (IEMO-
CAP) Database [14]. This database contains acted and improvised
interaction scenarios between five pairs of actors (one male-one fe-
male). The data include audio, video, and motion capture cues with
over 12-hours of affective expressions. The data are segmented into
over 10,000 utterances about half of which have motion capture in-
formation. The categorical ground truth for each utterance was an-
notated by at least three human evaluators. In this work we use utter-
ances with a ground truth from the set: Angry, Happy, Neutral, Sad.
There are three different expression types that are used in our work:
prototypical, non-prototypical and combined data. Prototypical data
are utterances with total evaluator agreement, non-prototypical data
have only majority vote agreement, and the combined data include
both prototypical and non-prototypical data. There are 284 angry,
707 happy, 123 neutral, and 316 sad prototypical utterances (1430
utterances in total) and 316 angry, 498 happy, 455 neutral, and 319
sad non-prototypical utterances (1588 utterances in total).

In this work we use both audio and motion-capture features.
The audio features include pitch, intensity and Mel Filterbank co-
efficients. The motion-capture features are based on Facial Anima-
tion Parameters. Our input features are statistical functionals of the
raw features. They include: mean, variance, lower quantile, upper
quantile, and quantile range. The initial feature set contained 685
features, where 145 are audio and 540 are video features. This initial
feature was reduced to 180 features as in [6] using Principal Feature
Analysis (PFA) [15]. PFA is a variant of Principal Component Anal-
ysis (PCA). It projects the input data into the PCA space and clusters
the data in this space using k-means. It returns the features closest
to the center of each cluster. This ensures that the final features are
features in the original space and that a target level of variance in the
dataset is retained.

3. EMOTION ESTIMATION
3.1. Emotion Profile (EP)

The short-term affective estimates are made using the Emotion Pro-
files (EPs) framework. EPs were introduced and demonstrated to be
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Fig. 2. Emotion Profiles (EPs) and Emotograms generation pro-
posed and described in the previous work [13]

effective for emotion recognition tasks in [5, 6, 13]. EPs describe
the emotion content of an utterance by capturing the subtle blends
of emotional cues present in that utterance. EPs estimate the de-
gree of confidence in the presence or absence of each of these cues,
forming an n-dimensional estimate of affective content. In this pa-
per, we use utterances in the label set: Angry, Happy, Neutral, Sad.
Thus, the EP for an utterance is a four-dimensional vector describ-
ing the confidence, c, in the presence of each emotion from the set:

EP = [cangrys Chappys Cneutral, Csad]. We measure confidence us-
ing Support Vector Machines (SVMs). SVMs are binary maximum
margin classifiers that find a separating hyperplane that maximizes
the distance from the hyperplane to the points closest to the hyper-
plane. The outputs of SVM are class membership (£1) and dis-
tance from hyperplane. We multiply these quantities to arrive at an
approximate measure of confidence. The SVMs are trained using
leave-one-speaker-out cross-validation (Figure 2).

3.2. Emotogram

The emotogram of an utterance is the set of EPs extracted over
windowed regions of an utterance (See Figure 2). They provide
a dynamic description of the estimated presence or absence of
each emotional cue [6, 13]. This can be seen as estimating the
manner in which emotion cues flow in an utterance. Emotograms
are four-dimensional time-series of estimated emotion dynamics:

Emotogram = [E_Pl> s E—>Pg s s E—>PT], where T represents the num-
ber of sliding windows in an utterance. In this paper, we use window
lengths of 0.25, 0.5, 1.0, 1.5, and 2.0 seconds to evaluate the effect
of window size on classification performance [6]. We investigated
denoising techniques to mitigate subtle estimation noise. However,
both Median Filtering and Kalman Smoothing techniques did not
result in performance increases as compared to the raw emotograms.
Therefore, the emotograms were not smoothed. We hypothesize that
this may be because our DTW based method captures high-level
emotion flow patterns, rather than the small estimation fluctuations,
which would be sensitive to noise.

4. METHODS
4.1. Similarity Measurement Between Emotograms Using DTW

Our hypothesis is that the utterance-level patterns of emotion flow
are informative with respect to emotion class. To test this hypothe-
sis we measure the time-series similarity between each emotogram,
our estimates of emotion flow, using DTW. DTW is a widely used
technique that finds the best alignment between two time series by
identifying the warping path between the two sequences that mini-
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mize the difference between the sequences. DTW has been widely
used in many domains including speech recognition [16] and hand-
writing recognition [17]. DTW captures utterance-level dynamics,
rather than probabilistic transitions in frame-by-frame characteris-
tics, which are seen in HMM modeling. DTW provides flexibility
in the analysis of utterances of different lengths since it aligns time
series data. In emotion data, contrasted with speech phoneme mod-
eling, the affective data are often of highly varied length. HMMs
do not offer this same flexibility because of their innate restriction
to an n-state model independent of utterance length. Further, it is
difficult to interpret the resulting models generated by HMMs. We
present an alternative dynamic modeling technique that facilitates vi-
sualizations of affective flow, providing clear measures of emotional
similarity. We propose that DTW can be an alternative strategy for
emotion recognition.

We align two utterances in the emotion space defined by the
emotograms using Multi-Dimensional Dynamic Time Warping
(MD-DTW), presented in [18]. MD-DTW uses all emotogram
dimensions to identify the best alignment between two utterances
in the emotion space. We define the emotion space as ®*” for a
descriptor of length I and dimension J, where J is the number of
emotogram dimensions (J = 4). Let T € ®*7and L € N>/
be two emotograms in this space. MD-DTW computes the op-
timal alignment between 7" and L using dynamic programming
(O(MN)) [19]. We find the optimal alignment by computing dis-
tance between the utterances. The distance measure between any
two points in the series is defined as d : & x & — R > 0, which
can be any p-norm. We use 2-norm, the summation of the squared
differences across all dimensions.

The MD-DTW algorithm populates the M by N distance matrix
D according to the following equation:

D(Zvj) = Z(T(lvk) - L(]7 k))Qa (D

1

where ¢ and j represent the specific short-time estimate of the
emotograms, 7" and L. The distance matrices can be visualized
to understand the structural similarities across emotion class (Fig-
ure 3). We implemented four-dimensional DTW by modifying the
one-dimensional code of [20].

4.2. k-Nearest Neighbor Classification Using MD-DTW

We use the k-Nearest Neighbor (k-NN) classifier to assign a final
emotion class label based on the MD-DTW measure. k-NN assigns
a label to a given test utterance based on the labels of its k nearest
neighbors. The assigned label is a majority vote over the neighbors’
labels. We select k using a 10-fold cross-validation hyper-parameter
search over values 1, 3, 5, 7, 10, 30, and 50. We did this search over
the combined data, which provided access to both the prototypical
and non-prototypical examples and found k£ = 50.

We refer to the total framework as DTW-ENN. The algorithm
is as follows. During training we calculate the DTW similarity be-
tween every pair of testing and training utterances. During testing
we find the k closest neighbors to each test utterance using this
DTW distance. We label the test utterance with the majority voted
label of its k nearest training utterances. In both the DTW-ANN and
baseline models we calculate accuracy using leave-one-speaker-out
cross-validation. The final reported accuracy measures are the aver-
age of the accuracies over all 10 folds.

Table 1. Unweighted classification accuracy (%) across different
window lengths for each expression type: (A) Prototypical, (B) Non-
prototypical, and (C) Combined.

Model Window size (seconds)

0.25 0.5 1 1.5 2

Emotogram 6690 66.82 67.15 68.50 67.76
A Feature 68.59 66.46 6651 67.38 67.49

Static EP 67.34

Emotogram 53.96 55.12 5531 5549 55.79
B  Feature 4930 50.12 51.64 52.64 51091

Static EP 54.11

Emotogram 63.95 64.01 6440 6438 64.27
C Feature 6272 6391 6391 64.02 6344

Static EP 61.20

4.3. Baseline Models

We evaluate DTW-ENN by comparing it to three baseline models.
The first baseline model tracks emotion similarity using trajectories
composed of the compressed feature space (‘feature trajectories’),
rather than the estimates of affective flow. We reduce our origi-
nal 180 features using Principal Component Analysis (PCA). The
feature dimensionality is selected using leave-one-subject-out cross-
validation over compressions that reduce the features space to 4, 10,
20, 30, and 40 dimensions. The best performing model uses ten PCA
features. We compare the performances of this compressed feature
space to that of the affective estimates to identify the method that
best allows us to capture the structure underlying emotional speech.
As in the emotion flow model, we calculate the DTW similarity over
each utterance, as represented by the feature trajectories, and then
identify the emotion state using k-NN with £=50 (selected using hy-
perparameter search).

The second baseline uses static EP modeling. Static EPs are
calculated in the same manner as short-time EPs. However, here the
emotion is detected using utterance-level statistics (as compared to
windowed statistics, e.g., over 0.25 seconds). This baseline assesses
whether the dynamics contribute to our understanding of emotion
class. We classify the final label of the static EP estimate using k-NN
over the four dimensions (kK = 50). In the static baseline, the k-NN
classifier uses the Euclidean distance between the four-dimensional
EP values of the training and test utterances.

The final baseline is a published result that modeled the dynam-
ics of the emotograms using HMMs. HMMs fit these dynamics to an
n-state model, where here n = 3 (with left-to-right topology) [13].
This baseline is a comparison to a result on a subset of the utterances
considered in this paper (2,903 utterances vs. 3,018 utterances).

5. RESULTS

All results are reported using unweighted accuracy, the average of
per class recall. This measure mitigates class imbalance in accuracy
reporting. The DTW-ENN method achieves the highest performance
gain for the non-prototypical utterances, the subtle utterances with
only majority ground truths. The maximal accuracy of our proposed
method for the non-prototypical data is 55.79% with a window size
of 2 seconds. This is 3.88% higher than the feature trajectory model
with the same window size, and 3.15% for the maximally accurate
feature trajectory (window size 1.5 seconds). It is 1.68% higher than
the accuracy of the static EP. In the prototypical data experiment, the
DTW-ENN method achieves the highest accuracy of 68.50% with a
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sen for visualization purposes, which are correctly classified by our
framework: (a) Angry, (b) Happy, (c) Neutral, and (d) Sad utterances

window size of 1.5 seconds. This outperforms the feature trajectory
model by 1.13% on the same window size. The maximal accuracy
for the feature trajectory model is 0.09% higher than our proposed
model (window size 0.25 seconds). The combined data has a maxi-
mal accuracy of 64.40% with the DTW-ENN method (window size
of 1 second). This is 0.48% higher than the feature trajectory with
the same window size and 0.38% higher than the feature trajectory
with its maximal accuracy with window size of 1.5 seconds. It is
3.20% higher than the static EP estimate. The results are summa-
rized in Table 1. The HMM baseline was calculated only over a
window size of 0.25 seconds with an accuracy of 64.67%. This is
a similar result to our proposed DTW-£NN method, 63.95%, for
a window size of 0.25 seconds and suggests this restricted n-state
structure may not be necessary for dynamic modeling of emotion.

6. DISCUSSION

Our results include three important findings. 1) The new dynamic
modeling technique using flow pattern modeling can effectively cap-
ture the emotion dynamics. These dynamics can be used to effec-
tively classify utterances. 2) In this framework, the secondary emo-
togram features outperform the compressed raw feature fluctuations,
particularly in the case of non-prototypical data. This suggests that
the secondary features capturing emotion flow offer a targeted com-
pression of the emotion space. 3) For emotionally subtle utterances,
our approach outperforms the baseline models.

One benefit of our method is that it provides insight into the

nature of inter-class similarity. We visualize the time-series simi-
larity distance matrix in Figure 3. The DTW distances correspond
to the five window sizes of: 0.25, 0.5, 1, 1.5, and 2 seconds (left
to right). The diagonal blocks of each distance matrix represent the
distance between the utterances with the same emotion class. Darker
regions indicate stronger similarity between the dynamics of the ut-
terances. The dark regions on the off-diagonals of the distance ma-
trices demonstrate that there exists confusion between Neutral and
Sad, and between Neutral and Angry. This confusion mirrors the
common classification error between the classes of neutrality and
sadness.

The distance matrix also permits an analysis of the structural
patterns that are similar. We present utterances that are similar using
the MD-DTW formulation. This provides an interpretable descrip-
tion of typical flow patterns for each emotion class (Figure 4). In
the figures, all utterances shown are correctly classified using the
proposed DTW-ENN framework. The angry utterances demonstrate
an interesting trend from high confidence in the presence of anger
to a more mixed appraisal of emotional message. The happy trends
show a peaked happiness behavior. The sad utterances display slight
fluctuations in expression. The neutral utterances depicted have ir-
regular flow patterns even though they are correctly classified (See
Figure 4(c)). This can explain the relatively low classification ac-
curacy of neutral utterances compared to that of the other emotion
classes. It also supports our hypothesis that the emotion flow simi-
larity may correspond to human emotion perception, since a label of
neutrality may be provided when there exists no dominant emotional
cues in an utterance.

7. CONCLUSIONS

In this paper we propose a new framework to characterize utterances
based on interpretable measures of affective dynamics. We use DTW
to align our affective estimates of emotion flow and then classify
using the resulting distance matrix using kKNN. This allows us to
evaluate the discriminative power of the framework. The speaker
independent experimental results are presented across five different
window sizes, 0.25, 0.5, 1, 1.5, and 2 seconds for prototypical, non-
prototypical, and combined data. Our results show that the proposed
method outperforms the feature trajectory and the static EP base-
line models. The highest improvement in our model comes from the
classification of non-prototypical, or emotionally subtle, utterances.
The novelty of our work is in its explicit modeling of the temporal
flow patterns of emotion estimates. By taking into account the long-
range dynamics of human emotion, we can have more natural and
interpretable modeling techniques for emotion dynamics.
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