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ABSTRACT

Combining diverse low-level features from multiple modal-
ities has consistently improved performance over a range of
video processing tasks, including event detection. In our
work, we study graph based clustering techniques for inte-
grating information from multiple modalities by identifying
word clusters spread across the different modalities. We
present different methods to identify word clusters including
word similarity graph partitioning, word-video co-clustering
and Latent Semantic Indexing and the impact of different
metrics to quantify the co-occurrence of words. We present
experimental results on a ≈45000 video dataset used in the
TRECVID MED 11 evaluations. Our experiments show that
multimodal features have consistent performance gains over
the use of individual features. Further, word similarity graph
construction using a complete graph representation consis-
tently improves over partite graphs and early fusion based
multimodal systems. Finally, we see additional performance
gains by fusing multimodal features with individual features.

1. INTRODUCTION

With the explosion of video content over the internet, au-
tomatic understanding of videos is a task which has several
applications including search, retrieval and large volume data
management and storage. A key feature of video content is
that it consists of different modalities, the correlations be-
tween which can be exploited for better understanding of the
content. The nature of these correlations (and which of them
can actually be detected) range from the direct, like a dog
seen and heard barking in the video, to the subtle like the
singing of a certain song during birthday parties.

Features for videos (and images) are commonly based on
Bag of Words (BoW)[1] models which have shown good per-
formance on many tasks including video event detection [2].
Here, low-level visual (e.g. [3][4]) and audio (e.g. [5]) fea-
tures are extracted from videos, projected to a pre-trained
codebook and then pooled to get a video-level feature rep-
resentation. Traditionally, information from multiple such
modalities are integrated using early fusion, such as feature
concatenation and multiple kernel learning [6], or late fusion

such as score level fusion [2].
An alternate approach is to discover multimodal fea-

tures based on the individual unimodal features and their co-
occurrences at the video [7] and temporal [8] levels. In [9]
dependencies between the modalities are found through ex-
tensive processing during feature extraction and a vocabulary
is built based on these dependencies. An alternate approach
is to exploit the co-occurences at the video level [7] to dis-
cover a multimodal vocabulary based on individual unimodal
video-level features seen in a training corpus. A key advan-
tage of this method is that it can be applied on pre-extracted
features from multiple modalities with only a small additional
post-processing cost.

In this work, we take the approach from [7] and ex-
plore a large set of variations and extensions to multimodal
vocabulary learning. We explore variations in the word simi-
larity graph partitioning methods and compare similarity met-
rics for word co-occurrence and optimal graph construction
choices between partite and complete graphs. We also eval-
uate alternate word clustering methods in addition to word
similarity graph partitioning [7], such as word-document
co-clustering [10] and latent semantic indexing [11]. We
rigorously evaluate the performance of each of these methods
for the video event detection task on the highly diverse and
challenging TRECVID MED 2011 dataset [12].

The rest of the paper is organized as follows: section 2 de-
scribes the bag-of-words based video event detection system;
section 3 describes the different codeword similarity metrics
considered; section 4 details the various methods for discov-
ering the multimodal words; section 5 presents experimental
results; and section 6 describes our conclusions.

2. VIDEO EVENT DETECTION SYSTEM

For the video event detection task, we rely on three com-
monly used feature sets: SIFT [3] (visual features extracted
at the frame level), STIP [4] (visual features over spatio-
temporal volumes), and audio features (14 MFCC’s [5] and
audio energy over overlapping audio frames, along with their
first and second derivatives) to capture information from dis-
tinct modalities. For each of these features, we compute a
codebook by unsupervised clustering from a training set of
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videos. Given a new video, we extract the low level features
and project each feature extracted to the codebook using soft
quantization [13]:

αi,j =
exp(−β||xi−cj ||2)∑K
k=1 exp(−β||xi−ck||2)

, (1)

where β controls the soft assignment. For pooling we take the
average of the soft-assignments for each region, i.e. hm =
1
N

∑N
i=1 αi. We train Support Vector Machine (SVM) clas-

sifiers for each event using χ2 kernels computed as:

K(x, y) = e
−ρ

∑
i

(xi−yi)
2

xi+yi . (2)

During training, we perform an extensive grid search to deter-
mine the optimal value for the slackness penalty parameter C
in the SVM and the parameter ρ of the kernel.

3. WORD SIMILARITY METRICS

To discover multimodal word clusters, we measure word sim-
ilarity between codewords of pre-extracted features. These
individual features are extracted from different modalities in
the video and represented by a bag of words based histogram.
For a given video, we normalize the features in each modality
by theL1 norm of the features to prevent a bias towards longer
videos. These feature values are represented by h(v, x), cor-
responding to the L1 normalized histogram values for a given
video v and codeword x. We describe in this section alter-
nate measures of word similarity between the codewords of
features in different modalities.

3.1. TF-IDF based Measure

Term frequency of word x in video v can thought of as rep-
resented by h(v, x), and the document frequency of word x
can be taken as the summation of h(v, x) over all the train-
ing videos. This gives a TF-IDF type measure as defined in
equation 3, where v1 · · · vN represent the N training videos.

TF-IDF(x, v) =
h(v, x)∑N
i=1 h(vi, x)

(3)

We define similarity between two words x and y as the
linear kernel of the TF-IDF vector taken over all the training
documents. This measure of similarity was used in [7].

3.2. Normalized Pointwise Mutual Information (NPMI)

Another measure of dependency between the video and word
as suggested by Liu et.al. in [14] is the use of pointwise mu-
tual information (PMI). Since PMI values can go to negative
infinity, we use the Normalized PMI (NPMI) as given in equa-
tion 4 to constrain the PMI value to the range [−1, 1].

NPMI(x, v) =
log p(x,v)

p(v)p(x)

− log p(x, v)
=

log p(x|v)
p(x)

− log p(x|v)p(v)
(4)

While Liu et.al [14] treat h(v, x) as an empirical joint
probablity p(v, x), we opt for the more commonly used inter-
pretation of the bag of words histogram feature as a measure
of the conditional probablity p(x|v) (as in [15]). Assuming
that the training videos are equally likely (i.e., ∀Np(vi) =
1/N ), we have an estimate of p(x) as given by equation 5 and
NPMI given by equation 6.

p(x) ≈
N∑
i=1

p(x|vi) · p(vi) =
1

N

N∑
i=1

h(vi, x) (5)

NPMI(x, v) ≈
log N ·h(v,x)∑N

i=1 h(vi,x)

− log h(v,x)
N

(6)

We define NPMI based similarity between codewords x
and y using a radial basis function (RBF) kernel over the
NPMI vectors as in [14].

4. MULTIMODAL WORD DISCOVERY

We discover multimodal word clusters that capture relation-
ships between words (within the same modality or across
modalities), and find the final feature vectors for the videos
by a simple average pooling of the individual feature values
of the words in the cluster. These new multimodal word
based features are used to train a classifier for event detection
as detailed in Section 2. We explore several methods for
discovering the word clusters, detailed in this section.

4.1. Word Similarity Graph Partitioning

The idea of discovering word clusters using a word-word sim-
ilarity matrix for videos was first proposed in Liu et.al. [14]
where the different modalities were different views of the
same action. This was adopted in [7] for finding bimodal
words across visual and audio modalities. They construct a
bipartite graph between the words of two different modali-
ties and use a spectral graph partitioning technique to identify
clusters on this graph.

The similarity between two words can be defined as sug-
gested in Section 3. Once the graph similarity matrix has been
constructed, spectral graph clustering algorithms such as nor-
malized graph cut [16] can be used to identify word clusters.
While [7] restricts itself to the use of a bipartite graph, we
explore the use of partite graph constructions (bipartite for
2 modalities and multipartite for more) as well as complete
graphs (where similarities between words in the same modal-
ity are also found and can be non-zero in the graph similarity
matrix). The use of complete graphs enables a comparison
with other traditional word clustering methods from natural
language processing described in 4.2 and 4.3.
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4.2. Word-video Co-clustering by Spectral Graph Parti-
tioning

Dhillon et. al. [10] suggested a method to perform word-
document co-clustering which is also based on the con-
struction of a bipartite graph and the use of spectral graph
partitioning. A word-document bipartite graph is constructed
using simple TF or TF-IDF measures as similarity between
the word and document nodes in the graph. We adapt the
method and create a word-video bipartite graph using the TFs
where the word may be from any of the unimodal vocabular-
ies.

Given the word-video TF matrix, A, of size M × N
(number of words × number of training videos), we find
An = D1

−1/2AD2
−1/2, where D1 and D2 are diagonal

graph node degree matrices given by D1(i, i) =
∑
j Aij and

D2(j, j) =
∑
iAij . Dhillon et. al. [10] show that the singular

value decomposition (SVD) of An can provide a normal-
ized cut of the word-document bipartite graph, which helps
reduce computation. Specifically, to find k word clusters,
we use the l = dlog2ke left singular vectors {u2, . . . ,ul+1}
and right singular vectors {v2, . . . ,vl+1} of the SVD of
An = UΣVT to construct Z as follows

Z =

[
D1
−1/2U

D2
−1/2V

]
(7)

where U = [u2, · · · ,ul+1] and V = [v2, · · · ,vl+1]. We
determine the word clusters on this l dimensional data Z using
standard k-means clustering.

4.3. Latent Semantic Indexing

Another methodology we implement to identify word clusters
is Latent Semantic Indexing (LSI) using the word-video TF
matrix A as is done for documents [11]. This relies on a
direct SVD of A into UΣVT with the l largest left singular
vectors providing a low dimensional projection of the words.
The lower dimensional representation of words are given by
UNxl·Σlxl where the subscripts give the sizes of the matrices,
and these may again be clustered using k-means clustering.

5. EXPERIMENTAL RESULTS

We test our approach on a large, benchmark dataset of videos
used in the TRECVID MED 2011 evaluations [12]. For our
experiments, we use the development set released for the eval-
uations. This is a 13,000 video set containing ∼1,750 un-
constrained web videos from 10 complex events of interest,
with 100-200 examples per event, and the remainder from the
background class. We partition the videos from each event
and the background class in a 3:1 ratio into train and test sets.
The training set is used to train the final SVMs, after tuning of
the hyper parameters C and ρ (Section 2) by k-fold validation
on the training set.

Table 1. Baseline video event detection using ANDC.
Feature ANDC
SIFT 0.9938
STIP 0.8895

MFCC 1.043

We compare systems using the average normalized detec-
tion cost (ANDC) defined in [12]. For each event of inter-
est, we first determine a detection threshold Th on the output
probability score using k-fold validation. Then the ANDC
score is computed as:

f = wMDPMD(Th) + wFAPFA(Th) (8)

where PMD(Th) and PFA(Th) are the missed detection and
false alarm rates at the detection threshold Th and wMD,
wFA are the relative weights for missed detections and false
alarms. In particular, a lower ANDC score indicates better
performance. This score is often used in machine learning
with imbalanced datasets. For the TRECVID MED dataset,
different systems are compared with wMD=1.0, wFA=12.49.

5.1. Baseline Results

To create a baseline system, we use individual features to per-
form event detection. Table 1 gives ANDC results for SIFT,
STIP and MFCC features.

5.2. Impact of Word Similarity Metric

We ran experiments to identify the better similarity metric be-
tween TF-IDF and NPMI for the word similarity graph parti-
tioning method described in Section 4.1. All results in Table 2
are based on the usage of a partite graph and for varying num-
ber of word clusters. The given number reflects the maximum
number of clusters provided as input to the normalized cut al-
gorithm; the actual number of found clusters may be fewer.
Results in Table 2 show that increasing the number of clus-
ters results in improved performance. The better performance
of the TF-IDF measure over NPMI in general, especially at
higher number of clusters, can also be noted. Analysis of
the discovered clusters show that the use of TF-IDF results
in more reasonable clusters of moderate size, while the use
of NPMI as a metric generates many singular clusters (clus-
ters with only a single word) and clusters with a large number
of words, resulting in a highly bimodal distribution of cluster
sizes.

5.3. Comparison of Partite and Complete Graph

Moving from a partite graph to a complete one provides con-
sistent performance gains, as detailed in Table 3, suggesting a
better identification of clusters. The use of a complete graph
results in discovery of more unimodal word clusters and fewer
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Table 2. Comparison of similarity metrics and number of clusters using ANDC.
Max. no. of SIFT+MFCC STIP+MFCC SIFT+STIP+MFCC
clusters PMI TF-IDF PMI TF-IDF PMI TF-IDF
2000 1.1470 0.9460 0.8835 0.9063 0.8524 0.9461
4000 1.0070 0.9080 0.8543 0.9206 0.8500 0.8395
6000 0.9455 0.9079 0.8694 0.8987 0.8338 0.8292

Table 3. Multimodal event detection performance using
ANDC.

Method SIFT+
MFCC

STIP+
MFCC

SIFT+
STIP+
MFCC

Word sim + par-
tite graph

0.9079 0.8987 0.8292

Word sim +
complete graph
(SGfeat)

0.8771 0.8632 0.8062

Word-video
co-clustering
(CCfeat)

0.9343 0.8371 0.8034

LSI (LSIfeat) 0.9043 0.8332 0.8089

multimodal words than with the use of partite graphs which
resulted in unexpectedly large number of multimodal clus-
ters (and almost no unimodal clusters). Results have been
reported only for number of maximum clusters set at 6000, al-
though similar trends were observed at lower number of clus-
ters as well.

The use of a complete graph is akin to word clustering
without consideration of modality, allowing a direct com-
parison with the word-video co-clustering and LSI methods.
These sets of at most 6000 features formed from multimodal
words are referred to as SGfeat, CCfeat and LSIfeat for
those found by word Similarity (complete) Graph partition-
ing, word-video Co-Clustering and Latent Semantic Indexing
respectively. Video event detection performance using any of
SGfeat, CCfeat or LSIfeat outperforms the baseline use of
unimodal features shown in Table 1.

5.4. Early Fusion with Individual Features

While all three considered methods provide gains in perfor-
mance over individual features, the question is whether these
multimodal word clusters capture some underlying patterns.
Therefore, we performed early fusion of unimodal features
with the multimodal word features using MKL [6] and com-
pared the performance with the early fusion of only the uni-
modal features. The resulting performance improvements, as
seen in Table 4, suggest that these features provide informa-
tion complementary to unimodal features.

Table 4. MKL based early fusion performance using ANDC.
Features combined using MKL ANDC
SIFT + STIP + MFCC 0.8288
SIFT + STIP + MFCC + SGfeat 0.8055
SIFT + STIP + MFCC + CCfeat 0.8055
SIFT + STIP + MFCC + LSIfeat 0.8081

6. CONCLUSIONS

We presented a rigorous analysis of graph-based clustering
approaches for designing multimodal features. Our results
indicate that TF-IDF with a linear kernel provides a better
measure of co-occurrence of codewords over use of NPMI
with RBF kernel, evident in the better performance of the for-
mer in discovering word clusters using the word similarity
graph partitioning method. Use of complete graphs instead of
partite graphs provides further gains. The discovery of mul-
timodal words, using any of the suggested methods, and use
of combined features based on these clearly helps in the event
detection task over the use of unimodal features alone. The
improvement in event detection over early fusion using the
original unimodal features shows that multimodal features are
capturing underlying multimodal patterns that aid in event de-
tection. Additionally, while this entire method was unsuper-
vised, in future we plan to discover event based codeword
clusters to provide more discriminative information. Further,
our approach can also be used to discover better word clusters
based on word co-occurrence in temporal and spatial levels.
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