
MULTIMODAL ANALYSIS OF SPEECH PROSODY AND UPPER BODY GESTURES USING
HIDDEN SEMI-MARKOV MODELS

Elif Bozkurt, Shahriar Asta, Serkan Özkul, Yücel Yemez, and Engin Erzin
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ABSTRACT

Gesticulation is an essential component of face-to-face communica-
tion, and it contributes significantly to the natural and affective per-
ception of human-to-human communication. In this work we inves-
tigate a new multimodal analysis framework to model relationships
between intonational and gesture phrases using the hidden semi-
Markov models (HSMMs). The HSMM framework effectively as-
sociates longer duration gesture phrases to shorter duration prosody
clusters, while maintaining realistic gesture phrase duration statis-
tics. We evaluate the multimodal analysis framework by generating
speech prosody driven gesture animation, and employing both sub-
jective and objective metrics.

Index Terms— Prosody analysis, gesture segmentation, gesture
animation

1. INTRODUCTION

Gesture and speech co-exist in time with a tight synchrony, and
they are planned and shaped by the emotional state and produced
together. In one of the pioneering studies on gesture and speech
relationship, Kendon [1] proposed a widely accepted hierarchical
model for gesture. In this model, the core gestural element is de-
fined as gesture phase and combinations of gesture phrases form
gesture units. In this hierarchical model, semantic expressiveness
of hierarchy levels increases as we move further away from the core.
On the other hand there are four widely referred types of gestures,
which were proposed by McNeill [2]: iconics, metaphorics, deictics
and beats. Iconic gestures illustrate images of an object or action,
metaphoric gestures represent abstract ideas, deictic gestures rela-
tively locate entities in physical space, and beat gestures are simple
repetitive movements to emphasize speech.

Synchrony between gestural and phonological structures has
been studied by various researchers. Kendon stated the synchrony
between strokes and stressed syllables in [1], later McNeill [2] pro-
posed the widely accepted phonological synchrony rule stating that
the stroke of the gesture precedes or ends at, but does not follow,
the phonological peak syllable of speech. Valbonesi et al. [3] in-
vestigates the nature of temporal relationship between speech and
gestures. In a recent study, Loehr [4] presents a detailed inves-
tigation of temporal and structural synchrony between intonation
and gesture. His findings verify the alignment of the pitch accents
with the gestural strokes; furthermore he presents evidences of the
synchrony between gesture phrases and intermediate intonational
phrases.

This work was supported by Turk Telekom under Grant Number 11315-
02.

Existing gesture synthesis methods can be classified into two
groups: rule-based and data-driven approaches. The Embodied Con-
versational Agents (ECAs) of Cassell [5] is a pioneering rule-based
full-body gesture synthesis system, which performs animations over
a pre-defined gesture tree. The VirtualHuman research project [6]
and the probabilistic approach of Neff et al. [7] are examples of
audiovisual data-driven approaches for full-body gesture animation.
The VirtualHuman project aims to develop interactive virtual char-
acters with a personality profile, whereas Neff et al. [7] present a
probabilistic approach to produce full-body gesture animation for
a given input text in the style of a particular performer. Recently,
Levine et al. [8] have introduced gesture controllers, which avails a
modular methodology to drive beat-like gestures with live speech,
using customized gesture repertoires. Gesture controllers infer hid-
den states from speech, and select the optimal gesture kinematics
based on the inferred states. From a hierarchical perspective, the
work of Levine et al. is mainly concentrated on the gesture phase
level. Although motion capture systems are becoming widely avail-
able, there is limited work in the literature on processing of 3D
motion data rather than using it for 3D reconstruction. Heloir et
al. [9] provide technical setup, scenarios and challenges in building
a motion capture database for virtual human animation. Similarly,
Busso et al. [10] present the interactive emotional dyadic motion
capture (IEMOCAP) database, which is a multimodal and multi-
speaker database of improvised dyadic interactions.

Early works on prosody driven gesture synthesis mostly con-
centrate on facial expression and head motion. Face animation with
expressions using neural networks [11], and multimodal commu-
nication using affine transformations [12] are among the works on
facial expression synthesis. An approach to synthesize emotional
head motion sequences driven by prosodic features is presented in
[13] by building hidden Markov models for emotion categories to
model temporal dynamics of emotional head motion sequences. A
two-stage framework for joint analysis of head gesture and speech
prosody patterns of a speaker towards automatic realistic synthesis
of head gestures from speech prosody has been studied in [14]. A
recent paper [15] focuses on building a speech-driven facial anima-
tion framework to generate natural head and eyebrow motions using
dynamic Bayesian networks (DBNs).

In this study, we employ hidden semi-Markov model (HSMM)
for multimodal analysis of gestures and prosody. The HSMM was
first introduced by Ferguson [16] as the explicit duration hidden
Markov models. The main intuition behind the HSMM idea is to
extend hidden Markov models to processes where states have dura-
tions and state duration is allowed to follow a probabilistic distribu-
tion. We employ the HSMM framework to realistically model the
gesture phrase durations for the problem of generating body gesture
sequences from prosody observations. To our best knowledge, this
is the first time that HSMM is considered for the task of synthesizing
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body gesture phrases from prosody observations. Moreover, from a
hierarchical perspective, our work is mainly concentrated on gesture
phrases which is semantically more expressive than gesture phases
studied in the work of Levine et al. [8]. Hence our framework pro-
vides a more personalized synthesis. Our experiments show that the
animated gestures generated by our method are plausible and look
natural.

2. MULTIMODAL ANALYSIS AND SYNTHESIS OF
GESTURE PHRASES

The general framework for our automatic hand gesture synthesis
system is given in Fig. 1. The framework consists of three main
functional blocks for analysis, synthesis and animation. The anal-
ysis functional block consists of unimodal analysis of speech and
body motion to extract intonational and gesture phrases, as well as
multimodal analysis to learn dependencies between intonational and
gesture phrases by utilizing an HSMM. In the synthesis functional
block, we generate a gesture sequence along with gesture durations
given a speech input. Finally, in the animation functional block,
the synthesized gesture sequence is mapped into a body motion se-
quence so as to obtain a natural looking animation.
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Fig. 1. The block diagram of the general framework for the auto-
matic upper body gesture synthesis system.

2.1. Prosody Clustering

Prosodic voice characteristics at the acoustic level, including into-
nation, rhythm and intensity patterns, carry important temporal and
structural synchrony with gesture phrases [4]. Acoustic features such
as pitch and speech intensity can be used to model underlying into-
national phrases of speech. We choose to include normalized speech
intensity, normalized pitch and confidence to pitch, which is repre-
sented with pitch gain, in the prosody feature vector. We estimate
the prosody feature vector for each speech frame of 25 msec dura-
tion centered on a 50 msec analysis window. Speech intensity, Ik,
is extracted as the logarithm of the signal energy in the kth analysis
window. The normalized speech intensity, Īk, is then extracted with
mean and variance normalization. Pitch, τk, is computed using the
auto-correlation method [17]. Confidence to pitch, rk, is set to the
normalized auto-correlation value at pitch lag τk. Since pitch val-
ues differ for each speaker and the system is desired to be speaker-
independent, speaker normalization is applied. For each speech seg-
ment, we compute the mean pitch value over the pitch values with
pitch confidence higher than 0.4. Then the mean pitch value is re-
moved from the pitch values, which are computed for each segment,
to obtain the normalized pitch τ̄k. Then normalized intensity, nor-
malized pitch, pitch confidence and the first derivative of these three

parameters are used to define the prosody feature vector,

fpk = [Īk, τ̄k, rk, ∆Īk, ∆τ̄k, ∆rk], (1)

where ∆ defines the first order derivative for the corresponding fea-
tures.

We extract intonational phrases through unsupervised temporal
clustering. For the purpose of temporal clustering we employ the
parallel branch HMM structure described in [14]. The prosody fea-
ture stream F p = {fp1,f

p
2, ...,f

p
T } is used to train a parallel branch

HMM structure, Λp, which clusters the prosody feature stream and
captures recurrent intonational phrases. The HMM structure Λp is
composed of Mp parallel left-to-right HMMs, {λp1, λ

p
2, ..., λ

p
Mp
},

where each λpm is composed of Np states. The unsupervised clus-
tering process defines temporal intonational segments, where each
segment label `pl for the lth segment is assigned to one of the Mp

available segment classes {p1, p2, ..., pMp}. The frame level label
sequence for an intonational phrase sequence is then defined by

ξt = `pl for t = tl, tl + 1, . . . , tl+1 − 1, (2)

where ξt is the intonation label of the tth speech frame, and tl is the
first frame of the lth intonational segment.

2.2. Gesture Clustering

In this study we model upper-body gestures, specifically hand ges-
tures, at gesture phrase level to emphasize speech intonation. For
analysis of gestures, we employ joint angles as the gesture features
from four body parts: left arm, left forearm, right arm, and right fore-
arm. We define the gesture feature vector for the ith joint at frame k,
fJik , to include the joint angles from the ith body part and their first
order derivatives,

fJik = [θik, φ
i
k, ψ

i
k,∆θ

i
k,∆φ

i
k,∆ψ

i
k], for i = 1, 2, 3, 4, (3)

where θik, φik and ψik are the Euler angles respectively in x, y and z
directions, representing the posture of the ith joint at frame k, and
∆θik, ∆φik, ∆ψik denote their respective first order derivatives. The
resulting gesture feature for the four joints at time frame k is defined
as

fgk = [fJ1k , ...,fJ4k ]. (4)

We perform semi-supervised clustering by using the paral-
lel branch HMM structure, Λg , over the gesture feature stream
F g = {fg1,f

g
2, ...,f

g
T } to extract recurrent gesture phrases. The

HMM structure Λg is initially set to have two parallel branch HMMs,
{λg1, λ

g
2}, where each λgm is composed of Ng states. The number

of branches increased iteratively to Mg by using both human su-
pervision and the parallel branch HMM temporal clustering in a
semi-supervised manner. Eventually the semi-supervised clustering
process defines gesture phrase segments, where each segment label
`gl for the lth segment is assigned to one of the Mg available gesture
phrase classes {g1, g2, ..., gMg}.

2.3. HSMM for Intonational and Gesture Phrases

In a natural speaking style, beat gestures are articulated in synchrony
with speech prosody to emphasize the underlying speech [2–4]. In
this section we construct a multimodal analysis framework to model
the relationship between beat gestures and speech prosody. In gen-
eral, intonational phrases last much shorter than gesture phrases in
duration, and a gesture stroke precedes or ends at, but does not fol-
low, phonological peak syllable of speech as McNeill stated in [2].

A gesture phrase sequence, when accompanied by a sequence
of intonation phrases, forms a random process which can be seen as
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a Markov process. One useful mathematical model for the multi-
modal analysis of gesture and intonation phrases can be constructed
by taking gesture phrases as the states of a Markov chain and intona-
tion phrases as the observations of this Markov process. Hence state
transitions correspond articulation of consecutive gesture phrases,
and gesture phrases are expected to localize in time with respect
to the McNeill’s phonological rule by observing intonation phrases.
Since the relationship between gesture and intonation phrases is not
strong however, if a gesture phrase sequence were to be synthe-
sized using this model, given intonation phrase observations, gesture
phrases would have a shortfall in modeling duration in time. An-
other useful mathematical model to overcome this shortfall is to in-
troduce a state duration model so that one can better control gesture
phrase durations in the synthesis process. Combination of these two
useful mathematical models yields the hidden semi-Markov model
(HSMM) framework [18], that we use for multimodal analysis of
gesture and intonation phrases. Fig. 2 shows how such an HSMM
structure works.
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Fig. 2. In a Hidden Semi-Markov Process, each state has a duration
and emits a number of observations.

An HSMM representing intonation phrases as observations with
Mg fully connected states is modeled as Λgp = (A,B,D,Π). The
states of Λgp represent gesture phrase classes, and the model param-
eters A, B, D, Π are respectively state transition probability, ob-
servation emission distribution, state duration distribution, and initial
state distribution matrices.

TheMg×Mg state transition matrixA is defined by entries aij ,
each representing the state transition probability from gesture gi to
gj ,

A : {aij = P (`gl = gj |`gl−1 = gi)} i, j = 1, ...,Mg, (5)

where `gl represents the lth gesture in the sequence of gesture
phrases. The observation emission distribution B is modeled by
discrete probability mass functions for each gesture gi,

B : {bi(pk) = P (pk|`gl = gi)} k = 1, ...,Mp, i = 1, ...,Mg,
(6)

where bi(pk) is the probability of observing intonation phrase pk
at gesture gi. The state duration distribution D is formed as state
dependent duration probability mass functions,

D : {di(k)} i = 1, ...,Mg, k = 1, ...,
Dmax
δ

, (7)

where di(k) is the probability of gesture gi lasting kδ sec, Dmax is
the maximum duration among all gestures, and δ is the histogram
bin size for the underlying probability mass function. We take the
maximum duration as Dmax = 10 sec, and the histogram bin size
as the speech frame duration, δ = 25 msec. The initial state proba-
bility vector Π is defined by entries πi representing the probability
of starting with gesture gi as the first gesture phrase,

Π : {πi = P (`g1 = gi)} i = 1, ...,Mg. (8)

The Λgp model is extracted by estimating the statistical param-
eters of the model over a training corpus. Statistical parameter esti-
mations are given as:

πi = P (`g1 = gi) =̂
C(1, i, j)∑
j′ C(1, i, j′)

, (9)

aij = P (`gl = gj |`gl−1 = gi) =̂

∑
l C(l, i, j)∑

l

∑
j′ C(l, i, j′)

, (10)

bi(pk) = P (pk|`gl = gi) =̂
O(i, k)∑
k′ O(i, k′)

, (11)

di(k) =̂
H(i, kδ ≤ τ < (k + 1)δ)∑
k′ H(i, k′δ ≤ τ < (k′ + 1)δ)

, (12)

where C(l, i, j) is the number of times gi is the lth gesture and gj
is the (l + 1)st gesture, O(i, k) is the number of frame count of
intonation phrase pk at gesture gi, and H(i, kδ ≤ τ < (k + 1)δ) is
the number of occurrences of gesture gi with duration τ in [kδ, (k+
1)δ) interval.

2.4. Gesture Synthesis

Gesture synthesis is defined as decoding an optimal state sequence,
ˆ̀g , over the HSMM Λgp given a sequence of frame level intona-
tional phrase labels, {ξ1, ξ2, . . . , ξT }. Note that the decoded optimal
state sequence delivers synthesized sequence of gesture phrases and
their durations, where the HSMM framework secures to have realis-
tic gesture phrase durations. In HMM framework, where the under-
lying process is Markov, given an observation sequence, the Viterbi
algorithm is employed to decode the most likely state sequence. In
HSMM framework however, states have variable durations and a se-
quence of observations is emitted at a single state. This requires to
define a forward likelihood function, which incorporates the state
duration model,

ψt(j) = max
τ

max
i
{ψt−τ (i) + log(aijdj(τ)

t∏
k=t−τ+1

bj(ξk))},

(13)
where ψt(j) is the accumulated logarithmic likelihood at time
frame t in state gj after observing intonational phrase labels
{ξ1, ξ2, . . . , ξt}. Based on the forward likelihood function ψt(j),
we define the following modified Viterbi decoding algorithm to ex-
tract the optimal state sequence, that is the optimal gesture phrase
sequence ˆ̀g = {ˆ̀g1, . . . , ˆ̀g

L}, and the associated gesture phrase
durations κ = {κ1, . . . , κL}.

The modified Viterbi decoding algorithm for gesture synthesis:

i. Initialize
ψ1(i) = log(πibi(ξ1)) i = 1, 2, . . . ,Mg

ii. Recursion: Repeat for t = 2, 3, . . . , T
T ′ = min(Dmax, t)/δ
Repeat for j = 1, 2, . . . ,Mg

Ψij
tτ = ψt−τ (i) + log(aijdj(τ)

∏t
k=t−τ+1 bj(ξk))

ψt(j) = maxτ∈[1,T ′] maxi∈[1,Mg ]{Ψ
ij
tτ}

ϕt(j) = arg maxi∈[1,Mg ]
maxτ∈[1,T ′]{Ψij

tτ}
νt(j) = arg maxτ∈[1,T ′] maxi∈[1,Mg ]{Ψ

ij
tτ}

iii. Backtrace the optimal gesture phrase sequence
ˆ̀g
L = arg maxj ψT (j)

κL = νT (ˆ̀g
L); l = L− 1; t = T

While t > 0
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ˆ̀g
l = ϕt(ˆ̀g

l+1)

κl = νt−κl+1(ˆ̀g
l )

t = t− κl+1; l = l − 1

2.5. Gesture Animation

Animation of the synthesized gesture sequence consists of three
main tasks: Extraction of gesture motion sequence with unit selec-
tion, smoothing gesture-to-gesture transitions, and finally animation
of the gesture motion sequence.

The first task is to generate a synthesized sequence of joint an-
gles, F̂

g
, given the synthesized gesture phrase ˆ̀g and duration κ se-

quences. This task is performed using unit selection over the gesture
phrases which are extracted during the gesture analysis. To select
gesture units with low concatenation distortion and low duration dif-
ference, we apply a dynamic programing algorithm that minimizes
a joint distortion function of the joint angle differences at transi-
tions and the gesture duration differences. The selected gesture units
are interpolated to fit the synthesized duration. The next task is to
smooth joint angle discontinuities over a temporal window at ges-
ture unit boundaries. This is achieved by applying an exponential
smoothing function on the synthesized gesture motion sequence. Fi-
nally, the smoothed gesture motion sequence is animated using the
MotionBuilder 3D Character Animation Software [19].

3. EXPERIMENTAL RESULTS

We use the multimodal upper-body (MVGL-MUB) corpus for mod-
eling the relationship between intonational and gesture phrases with
HSMMs [20]. In our experimental evaluations, we only consider a
single subject from the MVGL-MUB database, who has 5 recordings
with a total duration of 20 minutes. Since the variety of upper-body
expressions depends on the particular speaker, the upper body ges-
ture clusters for a given speaker are determined experimentally by
using the semi-supervised training set up described in Section 2.2.
The number of distinct upper-body expressions is identified asMg =
8 for the selected subject. The multimodal analysis and synthesis
steps are carried out by leave-one-recording-out. We evaluate the
proposed methods with objective and subjective tests.

3.1. Objective Evaluation

We consider similarity of the original and the synthesized gesture du-
ration statistics as a possible objective metric to evaluate our HSMM
based gesture synthesis framework. We use the symmetric Kullbeck-
Leibler (KL) divergence to measure the similarity of the synthe-
sized gesture sequence with the original one, where a smaller di-
vergence value indicates that the duration distributions of the two
sequences are consistent. Unsupervised clustering of the prosody is
performed using the parallel-branch HMM structures as described
in Section 2.1, with branch numbers ranging from 8 to 16 and state
numbers per branch ranging from 3 to 5. The resulting HSMM for
intonational and gesture phrases is evaluated with the KL divergence
metric for different parameter settings of the unsupervised prosody
clustering process. Table 1 presents the symmetric KL divergence
scores for various parameter settings. The minimum KL divergence
is observed with the Mp = 8 branches and Np = 4 states. We
use this setting in the subjective evaluations of our gesture synthesis
system.

Table 1. The symmetric KL divergence of the original and synthe-
sized gesture duration distributions for various prosody clustering
settings.

Np
Mp 8 10 12 16

3 1.171 1.121 0.956 0.761
4 0.649 1.293 1.093 1.147
5 1.272 1.221 1.021 1.574

3.2. Subjective Evaluations

Gesture sequences accompanying speech may be expressed in var-
ious different ways. Objective evaluations are incapable of quali-
fying such variabilities whereas, subjective tests would evaluate re-
alism and naturalness of the animation better by reflecting human
perception. We conducted subjective tests where each participant
was shown side-by-side pairwise A/B comparisons and was asked
to evaluate the naturalness of the upper body gesture animations on
a scale of (-2, -1, 0, 1, 2), where the scale corresponds to (A much
better, A better, no preference, B better, B much better). Each com-
parison consisted of a pair of animation clips in 40-120 second du-
ration for the same utterance generated by two of the three meth-
ods: the HSMM-based synthesis, random synthesis, and motion-
capture synthesis. The random synthesis has been created from a
random gesture sequence, where in the animation phase unit selec-
tion is performed based on the minimum concatenation distortion.
The motion-capture synthesis on the other hand uses the true motion
capture data in the animations.

In the subjective tests, each of the 9 participants was shown 20
pairs of animation clips in random order from a pool of 72 animation
clips. Table 2 presents the average preference scores and statistical
significance of the preferences in the subjective evaluations. While
the motion-capture synthesis is favored significantly over the ran-
dom synthesis, it is not discriminated significantly from the HSMM-
based synthesis. The proposed HSMM-based synthesis is assessed
to be significantly more realistic and natural than the random syn-
thesis with a p-value less than 0.004. Animation clip samples from
the subjective A/B comparison test are available for online demon-
stration [21].

Table 2. Results of the subjective A/B pair comparison test.
A/B Pair Average Preference p-value <

Motion-capture / Random -1.130 0.0006
Motion-capture / HSMM-based 0.019 0.9396
HSMM-based / Random -0.796 0.004

4. CONCLUSIONS

We have presented a new multimodal analysis framework for model-
ing the relationship between intonational and gesture phrases using
the hidden semi-Markov models (HSMMs). The proposed method
effectively associates longer duration gesture phrases to shorter du-
ration prosody clusters, while maintaining realistic gesture phrase
duration statistics that leads to animations perceived as realistic by
subjective evaluations. Future work would consider further inves-
tigation of objective metrics for the evaluation of the multimodal
analysis framework of prosody and gesture streams, as well as in-
vestigation of affective interactions between prosody and gesture.
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