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ABSTRACT

This paper presents a probabilistic framework for the multi-
modal alignment of dance movements. The approach is based
on a Hidden Markov Model (HMM) and considers different
feature functions, each corresponding to a particular modal-
ity, namely motion features, extracted from depth maps, and
audio features, extracted from audio recordings of dancers’
steps. We show that this approach allows performing accurate
dancer alignment, while constituting a general framework for
various multimodal alignment tasks.

Index Terms— Multimodal alignment, Hidden Markov
Model, dance gestures

1. INTRODUCTION

This work is concerned with the analysis of a challenging type
of human activity that is dance performance. More partic-
ularly, we consider here a virtual dance class scenario (in-
spired by the 3DLife ACM Multimedia Grand Challenge [1])
where dance lessons are given online by an autonomous vir-
tual agent who acts as a dancer teacher and is expected to
be able to automatically detect possible mistakes of the stu-
dents and suggest corrections. Hence, in such a scenario, one
important task involves recognizing the dance steps executed
by a student mimicking the teacher’s choreography, and, in-
timately linked to this, aligning the dance movements of the
student with those of the teacher. In this paper, we propose
a novel dance alignment method allowing for the fusion of
different streams of features extracted from modalities of dif-
ferent nature.

Among the numerous works interested in the alignment
problem, only a few deal with the particular application
of gesture alignment and even fewer focus on multimodal
gesture alignment. Thus, in [2] and [3], multidimensional
Dynamic Time Warping (DTW, introduced in [4]) is used
for gesture recognition and classification, respectively. In
these works, the term “multidimensional” refers to the size
of the feature vectors (namely 3D positions), extracted from
the same modality (visual and depth cameras, respectively).
The multidimensional DTW is further improved in [5] for the
gesture recognition using 3D skeletons stemming from depth
maps. In that work, the authors argue that not all skeletal

joints do participate equally to the alignment, some of them
would not be relevant, even leading to alignment mistakes.
They thus propose to weight each joint contribution within
the DTW framework. Multimodality is finally considered in
[6] where the authors propose a general approach to align data
composed of two asynchronous multidimensional modalities.

Parallel to these DTW-based deterministic methods, prob-
abilistic approaches find an equal success. Along this line
of research, most contributions consider, in particular, Hid-
den Markov Models (HMM). As examples, we can cite [7]
where the authors are interested in the alignment of image se-
quences within the context of human action recognition, and
[8] which, as a probabilistic counterpart of [6], introduces a
method to align asynchronous multidimensional and multi-
modal sequences with a view to audio-visual speech recog-
nition. Motivated by their common application (recognition),
both contributions exploit HMMs to describe different classes
of observations. Thus one HMM is trained for each targeted
action, then the alignment is performed through a model de-
tection.

In this paper, we propose to directly model the observa-
tions (i.e., the student’s dance sequence) as functions of refer-
ence data (i.e., the teacher’s dance sequence).

This paper is organized as follows. In Section 2, we
present the data considered in our alignment problem. We
then describe our probabilistic framework in Section 3, be-
fore showing some results illustrating the good performance
of the approach.

2. DANCE PERFORMANCE DATASET

In this paper, we consider the 3DLife ACM Multimedia
Grand Challenge 2012 dataset [1] which consists of 15 mul-
timodal recordings of Salsa dancers performing between 2
to 5 fixed choreographies, captured by a variety of sensors.
Each multimodal recording contains multi-channel audio,
video from multiple viewpoints, Wireless Inertial Measure-
ment Unit (WIMU) sensor data, Microsoft Kinect depth maps
and original music excerpts. For each of these modalities, a
time-stamp is available, allowing us to synchronize them in a
pre-processing step (we thus here differ from the approaches
[8, 6] where the considered signals are asynchronous).

We propose here to focus on the use of two different
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Fig. 1. Multimodal data considered for the alignment of
the dancers: 3D skeletons extracted from Kinect depth maps
(left) and step impacts extracted from piezoelectric transduc-
ers (right).

modalities, namely the Kinect depth maps and the piezo-
electric transducers (audio channels 1, 2, 17 and 18 of the
data). Note however that the presented approach can easily
be extended to many other modalities (see Section 3).

The Microsoft Kinect depth maps are exploited by means
of the Matlab SDK developed by Dirk-Jan Kroon and avail-
able on the Matlab website [9]. The code permits to track 15
3D skeletal joint positions (head, neck, torso, left and right
shoulders, elbows, hands, hips, knees and feet) for each video
frame.

From the onfloor piezoelectric transducers we detect the
step impacts following the same procedure as in [10], by ap-
plying a one-class Support Vector Machine (SVM) [11] to
feature vectors made up of the concatenation of onset de-
tection functions. The step detection results are then sub-
sampled at the Kinect frame rate (i.e., 30 frames per second).

Figure 1 illustrates the data considered for the proposed
alignment method.

3. PROBABILISTIC FRAMEWORK

We aim at aligning the movements of two dancers, a teacher
and his/her student. To this end, we propose to resort to a par-
ticular probabilistic model. We expose this model in Subsec-
tion 3.1 and formalise the alignment problem as a maximum
a posteriori detection problem in Subsection 3.2.

3.1. Model

We define the following notations. Let {Km}m∈{1,...,M} and
{sm}m∈{1,...,M} denote respectively the set of 3D skeleton
positions and step impacts, of the student over time (M is
thus the total number of data frames related to the student).
More precisely, ∀m ∈ J1,MK, Km = [km(i, j)](i,j) is a real-
valued 3 × 15 matrix corresponding to the 3 coordinates of
the 15 skeleton joints, while sm is equal to 1 if a step impact
is detected, 0 otherwise; Km and sm are gathered into the

variable ym
1. The same variables are also considered for the

teacher, but distinguished by the exponent “ref”. We finally
denote by N the number of frames of the teacher data. Note
that, in general, M 6= N .
∀m ∈ J1,MK, the observation ym is assumed to obey a

particular model indexed by the variable xm ∈ J1, NK:

p(ym|xm = n) = p(Km|xm = n) p(sm|xm = n), (1)

with p(Km|xm = n) ∝ exp(−µ1f1(Km,K
ref
n )),

p(sm|xm = n) ∝ exp(−µ2f2(sm, s
ref
n )),

where µ1, µ2 > 0. The functions f1 and f2 are feature func-
tions. They are here defined by

f1(Km,K
ref
n ) = ||Km −Kref

n ||F , (2)

f2(sm, s
ref
n ) = |sm − sref

n |, (3)

where ||.||F stands for the Frobenius norm.
Km and sm are thus assumed to be independent given

xm. We assume that the labels xm are linked through a first-
order Markov chain with N states. Hence, the chain states
are defined to be the set of all teacher’s frames and each ob-
servation ym is assumed to be generated by one of these N
states. The transition probabilities are parametrised as fol-
lows: ∀m ∈ J2,MK, ∀(i, j) ∈ J1, NK2,

p(xm = j|xm−1 = i) =


λ0 if j = i,
λ1 if j = i+ 1,
λ2 if j = i+ 2,
0 otherwise.

(4)

p(x1 = i) = 1/N, (5)

where λ0, λ1, λ2 > 0 and λ0 + λ1 + λ2 = 1.
According to model (1)-(5), the student’s movements are

seen as noisy versions of the teacher’s movements, consid-
ered as reference. The parameters µ1 and µ2 then stand for
the deviation of the student’s movements from those of the
teacher. Parameters λ0, λ1 and λ2 are merely the transition
probabilities of the HMM. As per (4), only transitions to the
next following two states are allowed, that is the sequence
of student’s movements is expected to be consistent with the
one of the teacher. To allow for more degrees of freedom in
the model, we could have considered a fourth parameter to
express the possibility to “jump two states”. However, this
would lead to an unnecessary increase of the complexity in
light of the performance achieved with the proposed model
(see Section 4).

3.2. Detection problem

Within model (1)-(5), the alignment between the student’s
and teacher’s movements is expressed as the estimation of

1When clear from the context, we will use indifferently the terms realiza-
tion and variable.
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Cross-correlation DTW Model (1)-(5) using Kinect only Model (1)-(5)
Well-aligned dance steps (%) 63 78 81 84

Average inaccuracy a (%)
for well-aligned dance steps 24 15 17 15

Table 1. Average results of different alignment methods

the HMM states sequence. Formally, let X define the set of
states, X , {xm}m∈{1,...,M}, and Y the set of observed data,
Y , {ym}m∈{1,...,M}. We focus on the following maximum
a posteriori detection problem

X̂ = argmax
X

p(X|Y). (6)

Problem (6) can be efficiently solved using a particular in-
stance of the well-known sum-product algorithm, namely the
Viterbi algorithm [12], of complexity O(MN).

The proposed approach offers some desirable properties:

• Through the insertion of additional feature functions,
it allows naturally taking novel modalities into ac-
count without modifying the general formalism (see
(1)). This property is interesting in situations where the
dancers are not always recorded with the same set of
capture devices (as envisaged for instance in the online
virtual dance class scenario [1]). The proposed model
can then easily adapt to different capture setups.

• It makes some model parameters (such as µ1 and µ2)
explicit which can be tuned to match the data. If µ1 and
µ2 are defined to be varying with respect to the frame
number n, we recognize the idea of some weighted
deterministic approaches, as the Weighted DTW pro-
posed in [13].

4. EXPERIMENTS

In this section, we evaluate the performance of the proposed
approach.

4.1. Evaluation dataset

Among the dance sequences made available in the 3DLife
ACM Multimedia Grand Challenge 2012 dataset [1], we fo-
cus our experiments on the male dancers for which we per-
formed a manual annotation of the dance steps2 (see Sub-
section 4.3). We have thus 4 different choreographies (“c2”
to “c5”) at our disposal, each containing between 10 and 12
dance steps. This leads to a set of 534 dance steps to align
with those of the teacher, “Bertrand”.

2In future work, these ground-truth annotations will be extended to the
female dancers as well.

4.2. Description of the compared alignment methods

We evaluate and compare four different alignment methods:

• “Cross-correlation” estimates the time-shift between
the dancing sequences to compare, by finding the time-
lag m̂ that maximizes the cross-correlation between
teacher and student joint sequences. Formally it writes

m̂ = argmax
m

∑
i

∑
j

N−m−1∑
n=0

kn+m(i, j) kref
n (i, j).

• “Dynamic Time Warping” corresponds to a multidi-
mensional Dynamic Time Warping (DTW) (similar to
[2]), using the Frobenius norm as distance measure.

• “Model (1)-(5) using Kinect data only” relies on the
probabilistic model (1)-(5) in which the variables corre-
sponding to the step impacts are not taken into account.
Equation (1) is thus rewritten as

p(ym|xm = n) = p(Km|xm = n),

∝ exp(µ1f1(Km,K
ref
n )).

• “Model (1)-(5)” corresponds to the proposed approach,
exploiting both Kinect and piezoelectric data.

Three of these methods are multidimensional methods and
deal with Kinect data only; the last one corresponds to the
model (1)-(5) (exploiting both Kinect and piezoelectric data).
For the two latter methods, we arbitrarily set λ0 = λ1 = λ2 =
1/3, and, after preliminary testing, µ1 = 10−3 and µ2 = 1,
in order to strengthen the relevance of the piezoelectric data.

4.3. Objective evaluation of the alignment accuracy

In order to achieve an objective evaluation of the alignment
accuracy, all the dance recordings considered have been man-
ually annotated. The step annotations are labels defined by
a start time (ST) and an end time (ET). After alignment, the
start time of each student step annotation is compared to the
nearest start time of the teacher annotation set. If the annota-
tions match, we consider that the current step has been well-
aligned and we compute a measure of inaccuracy a of the
alignment as

a=
100× d

d+dist(ST student annot., ST 2nd nearest teacher annot.)
,
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(a) Model (1)-(5) using Kinect data only
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(b) Model (1)-(5)

Fig. 2. Alignment between the right knee Z-positions of the teacher “Bertrand” (dotted line) and the student “Gabi” (continuous
line) in choreography “c3”, with two different methods. The x-axis corresponds to the frame number of the aligned sequences.

where d = dist(ST student annot., ST nearest teacher annot.)
and dist stands for a distance expressed in number of frames.
Note that a is zero in the best case (perfect alignment), and
equal to 50% in the worst case (for the steps considered as
“well-aligned”). We thus have at our disposal a relative mea-
sure allowing for an objective comparison of the different
alignment methods.

Table 1 presents the percentage of well-aligned dance
steps and the inaccuracy a of the alignment, averaged on the
dataset, for the four considered alignment methods. We can
here observe that, among the four considered methods, the
best alignment is performed by the proposed multimodal ap-
proach. Note that DTW adopts the strategy of missing some
steps but accurately aligning the remaining ones: it presents
the same inaccuracy measure as the proposed approach.

4.4. Discussion on the multimodality approach

Figure 2 presents an example of aligned sequences with
“Model (1)-(5) using Kinect data only” (Figure 2(a)) and
“Model (1)-(5)” (Figure 2(b)), to “visually” illustrate the rel-
evance of the multimodal approach. On this example, the
student “Gabi” does not perform the entire choreography
“c3” (some dance steps are missing at the beginning). His
movements are compared to those of the teacher “Bertrand”
for the same choreography. To make easier the visualization
of the aligned sequences, we proceed as follows: if the stu-
dent presents a delay with regard to the teacher, the teacher
“waits” for the students, i.e., new “virtual” frames are added
in his movement sequence by repeating his latest position,
until the student catches up; conversely, if the student is in
advance, he “waits” for the teacher, i.e., his latest position
is repeated until the teacher catches up. Consequently, the
frame numbers of the aligned sequences are the same but can
differ from an alignment method to another. On this exam-
ple, the proposed approach (Figure 2(b)) presents a perfect
alignment, while its “monomodal” counterpart misses one
step. Thanks to the integration of the step impacts into the

alignment process, the multimodal approach significantly im-
proves the performance. Note that this improvement comes
with a lesser increase of the computational complexity since
the only additional cost to consider lies in the evaluation of
the features (see equations (1)-(3)).

5. CONCLUSION

In this paper, we have presented a probabilistic framework for
the multimodal alignment of dance gestures. The proposed
approach exploits on the one hand a HMM and on the other
hand, feature functions able to take into account different
modalities. This approach is proved to be efficient on a large
dataset of multimodal recordings of different Salsa dancers
with different expertise. Moreover, its structure makes it par-
ticularly flexible: more modalities can be easily taken into
account by considering other feature functions.
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