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ABSTRACT

This paper addresses movie synchronization, i.e. synchro-
nizing multiple versions of the same movie, with an objective
of automatically transferring metadata available on a refer-
ence version to other ones. We first exploit audio tracks asso-
ciated with two different versions and adapt an existing audio
fingerprinting technique to find all temporal matching posi-
tions between them. We then propose additional steps to re-
fine the match and eliminate outliers. The proposed approach
can efficiently handle situations where temporal scene edits
occur like scene addition, removal, and even the challeng-
ing scene re-ordering case. Experimental results over syn-
thetic editorial data show the effectiveness of the proposed ap-
proach with respect to the state-of-the-art dynamic time warp-
ing (DTW) based solution.

Index Terms— Movie synchronization, landmark match-
ing, scene addition, removal, and re-ordering.

1. INTRODUCTION

Nowadays, different versions of a given video content may
co-exist and be accessed by end-users. A typical example is
successive DVD versions of a blockbuster that can be found a
couple of years after the theatrical one in extended version or
in director’s cut version. Another example is old movies that
are brought up to date with new additional visual effects or in
a colorized version. Due to local censure, some cleaned up
versions may also appear in which violent, religious, sexual
or political scenes are removed. Temporal edits that can occur
between those versions include scene addition or removal and
scene re-ordering. Thus, there is a real need for movie syn-
chronization with an objective of automatically transferring
some metadata available on the reference version to the sec-
ond version where those metadata are absent. Such metadata
may come from an artistic work, e.g. subtitles or chapters, but
they may also be generated through a computational analy-
sis of the audio-visual content itself, e.g. which characters are
present, indoor/outdoor scene, etc. In both cases, transferring
directly the metadata from one version to another avoids the
time consuming task of metadata re-generation.
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In this paper, we propose a synchronization algorithm
grounded on a successful audio fingerprint technique [1] with
significant extensions in order to address the considered scene
addition, removal and re-ordering situations. The developed
method is robust to distortions of the audio stream, e.g. un-
der compression or format conversion, and computationally
very efficient thank to the advantage of the fingerprinting
technique.

The rest of the paper is organized as follows. We first
discuss the related work in Section 2. We then present the
proposed synchronization approach in Section 3 where, for
clarity, each step in the global workflow is organized into a
subsection. We illustrate the experimental results to validate
the performance of the proposed algorithm in Section 4. Fi-
nally, we conclude in Section 5.

2. RELATED WORK

For such a content synchronization purpose, either image
descriptors, represented in the video frames, or audio fea-
tures, represented in the audio samples, are usually exploited
for matching [2]. As examples, Thudor et al. addressed the
video frame alignment for automatic chaptering of VoD con-
tent based on video feature matching in [3] while Bryan et
al. [4] exploited the audio landmark feature for clustering
and synchronizing multi-camera video. Concerning audio
based approaches, audio fingerprinting is naturally consid-
ered due to its compactness, its discriminative power, and its
robustness to various kinds of distortion [1, 5]. Originally,
fingerprint techniques have been developed for content iden-
tification purpose, e.g. Shazam’s music identification system.
Recently, they have also been exploited for other applications
such as identifying repeated sound events in personal record-
ings [6], clustering and synchronizing multi-camera video
[4], synchronizing media components streamed over different
networks for second screen TV applications [7], or retrieving
large scale video for copy detection [8]. Another state-of-
the-art approach for synchronizing two related contents is
Dynamic Time Warping (DTW). As examples, Macrae et al.
used it for music video alignment [9] and Anguera et al. used
it for spoken word matching [10]. This technique efficiently
tackles the problem of scene addition and removal by finding
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Fig. 1. Global workflow of the proposed algorithm.

an optimal path representing the highest similarity between
two feature sequences extracted from those contents. How-
ever, DTW can not deal with the scene re-ordering situation
due to the monotonicity condition. Moreover, its boundary
condition requires prior knowledge of the start and end coor-
dinates, which is not a trivial information, in order to compute
an optimal path.

3. PROPOSED APPROACH

This section describes the details of the proposed algorithm
starting from audio landmark extraction and matching steps
inherited from [1]. Following steps are proposed for the con-
sidered movie synchronization application. The global work-
flow of the algorithm is shown in Fig. 1.

3.1. Landmark extraction

The audio landmark feature was originally presented in the
well-known Shazam music recognition system [1]. This fea-
ture is derived from the spectrogram, a time-frequency (T-F)
representation of an audio signal by means of the short time
Fourier transform, where only local energy peaks, which have
higher energy than all their neighboring T-F points, are in-
dexed by their T-F coordinates. A fixed number of peaks are
chosen along each T-F region in order to assure a reasonably
uniform distribution and each peak, known as anchor point,
is paired with nearby ones within its target zone to form the
landmarks. These landmarks are then quantized and packed
into the L-bit unsigned integers and stored in the database to-
gether with the associated time offset from the beginning of
the file for hashing.

Note that by choosing spectral peaks as anchor points, the
derived feature is intrinsically robust to noise, and by using
pairs of T-F points rather than a single one, the deriving land-
mark exploits additionally discriminative spectral structure of
the audio signal. Although the implementation correspond-
ing to the original paper [1] has not been revealed, we use the
Matlab implementation by Dan Ellis [11] for the development
of our system.
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3.2. Landmark matching and histogramming

At this step, each landmark extracted from the audio track as-
sociated with the second version of the movie is used to search
in the database containing all landmarks extracted from the
audio track associated with the first version to find the match.
The detail of this process was described in [1] where deriv-
ing hash representation offers a great improvement in search
efficiency compared to a linear search. For each matching
landmark found, the corresponding time offsets from the be-
ginning of each audio file and their difference are stored. Af-
ter all landmarks have been scanned, the scatterplot of time
offsets corresponding to all matching landmarks is drawn to-
gether with the histogram representing the number of matches
as a function of the time differences between the two versions.
As an example, these pictures are shown by Fig. 2 and Fig.
3, respectively, for two versions of a 3 minute sequence of a
movie.

What can be observed from these figures is that when a
significant number of matching time pairs appears on a diag-
onal in Fig. 2, there is a corresponding histogram peak count-
ing for the same difference of time offsets in Fig. 3.

3.3. Thresholding and match filtering

By scanning landmarks for all possible hits, accidental
matches usually co-exist together with expected matches.
The latter form a diagonal in the scatterplot of time offsets
and a corresponding peak in the histogram. In order to fil-
ter out these accidental matches, local maximum peaks in
the histogram are first specified by comparing the numbers
of matching landmarks (values in y-axis in Fig. 3) to a pre-
defined threshold. The threshold value is generally chosen
depending on the landmark density, i.e. the approximate
number of extracted landmarks per second, and the dura-
tions of the matching periods between two versions. Then
the differences of time offsets between two versions corre-
sponding to these maximum peaks (values in x-axis in Fig. 3)
are used to reproduce the corresponding time offsets in two
versions. Note that this reverse process is possible because
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Fig. 2. Scatterplot of all matching landmarks.
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Fig. 4. Scatterplot of filtered matching landmarks.

a time offset was stored together with the time difference in
the landmark extraction step. Finally a scatterplot accounting
for only matching positions lying on considered diagonals is
produced. This scaterplot, as shown in Fig. 4, is actually a
filtered version of the one shown in Fig. 2 where acciden-
tal matches, which do not form a significant diagonal, are
eliminated.

It is important to note that at this step Shazam [1] searches
for only one maximum peak in the histogram to declare if two
signals are similar or not. In our proposed approach, several
maximum peaks are normally identified due to the multiple
edits along the second version of the movie.

3.4. Outlier elimination

The resulting scatterplot from the previous step may con-
tain outliers, i.e. points accidently lying on a diagonal but
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Fig. 5. Scatterplot of final matching landmarks after outlier
elimination.

do not represent the actual temporal match between two ver-
sions. These outliers are shown, as an example, by points
01,04, ...,Os in Fig. 4. Thus, at this stage, they need to be
eliminated in order to specify the correct boundary of each
resulting temporal matching segment. Additionally, this step
will help to specify the valid segments, if there is more than
one, in each diagonal.

We propose to use a hierarchical clustering-based ap-
proach [12] for this non-trivial work where each point in a
diagonal of the filtered scatterplot is first considered as a clus-
ter containing a single item. Euclidean distance between each
pair of clusters is computed and the clusters for which their
distance is smaller than a pre-defined threshold are merged.
This “’bottom up” process is repeated until either the distance
between any pair of clusters is larger than the threshold or
only one cluster remains. Note that, in our implementation
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we define the distance between clusters as the minimum dis-
tance between their boundary points, i.e. two points having
the lowest and the highest time offsets in each cluster. Fi-
nally, clusters with a small number of points are considered
to be outliers and are eliminated. The remaining clusters for
every diagonal, e.g. as visualized by Fig. 5, will represent the
estimated temporal matching between two versions.

In the example of Fig. 5, fives consecutive matching seg-
ments A, B, C, D, and E are identified. The gap between A
and B along the y-axis indicates that some scenes do not exist
in version 1, but are present in version 2. In the same man-
ner, the gaps between B and D, and D and E indicate that
some scenes are added to version 2 and removed from ver-
sion 1, respectively. However these scenes are considered to
be matched by segment C meaning that the scenes in version
1 appear at different time offset in version 2. This situation
corresponds to the scene re-ordering edits.

4. EXPERIMENTAL RESULTS

In order to evaluate the synchronization performance, due to
the lack of groundtruth for real edited versions of the movies,
we generated a synthetic dataset from 11 movies on DVD by
first extracting an audio track associated with each of them.
Then for each movie sound track, we selected 6 sequences of
approximately 180 second duration with different genres, i.e.
action, speech, and music, resulting in a total of 66 reference
audio files. For each of these files, we performed 4 different
edits: removing a 5, 10, and 15 second slot in the middle of
the file, and re-ordering a 10 second slot from a position at a
quarter of the file length to a position at three quarters of the
file length, resulting in a total of 264 edited audio versions.

Since DTW is a well-known technique for sequence align-
ment, we use it as a baseline for the comparison with our pro-
posed approach. Our DTW implementation took a vector of
12 Mel-Frequency Cepstral Coefficients (MFCCs), the well-
known feature widely used in speech recognition [13], as an
audio descriptor. Each MFCC sample is obtained over a 40
ms window with an overlap of 50% between two consecu-
tive ones. In the implementation of the proposed algorithm,
we extracted about 30 landmarks per second for the matching
and the threshold for the number of matching landmarks de-
scribed in Fig. 3 was set to 50. At the clustering step, clusters
with less than 5 matching points are considered to be outliers
and are eliminated.

The synchronization performance is evaluated in terms of
precision, ie. the fraction of detected synchronization parts
that are correct, recall, i.e. the fraction of correct synchro-
nization parts that are detected, and F-measure, i.e. the har-
monic mean of the precision and recall. We observed that
the proposed algorithm offers similar precision for all three
edits of scene removal while the DTW algorithm results in
lower performance with respect to larger scene removal, i.e.
its precision is 0.97, 0.94, and 0.92 for 5 s, 10 s, and 15 s ed-
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its, respectively. This is because DTW continuity condition
brings more false positive at the gap between two diagonals.
At another point, both algorithms offer similar result on ac-
tion, speech, and music data, meaning that audio genres do
not significantly affect the synchronization performance. The
overall performance, averaged for all genres and all scene re-
moval edits, is shown in Table 1.

Edits Algorithm | Precision | Recall | F-measure
Scene Proposed 0.98 0.96 0.97
removal DTW 0.94 1.0 0.97
Scene Proposed 0.95 0.90 0.92
re-ordering DTW non applicable

Table 1. Average synchronization performance.

It is not surprising that for the scene removal edits the
proposed algorithm offers higher precision, but lower recall
than that of the DTW algorithm. This can be explained by the
fact that landmark matching offers very low false positive, but
it may results in high false negative when landmarks are not
extracted for a certain period. On the contrary, DTW finds
the matching path frame by frame so it does not bring signif-
icant false negative but more false positive usually appears at
discontinuity edges. Overall, F-measure are comparable for
two methods. For the scene re-ordering edit, the proposed ap-
proach results in the average precision, recall, and F-measure
of 0.95, 0.90, and 0.92, respectively, while DTW algorithm
is non-applicable due to the monotonicity condition. Finally,
it is worth mentioning that the standard deviations of all the
measures are very small, e.g. that of the F-measure are 0.01
and 0.02 for DTW and the proposed approach, respectively,
meaning that the result achieved for each edited audio version
is very similar to the averaged value presented in Table 1.

5. CONCLUSION

In this paper, we presented an efficient method for frame syn-
chronization of different versions of a media content for a
practical application of automatically transferring metadata
from one version to the others. The proposed approach relies
on audio tracks associated with the videos such that an ex-
isting audio landmark matching is successfully applied with
substantial extension. Our experimental results indicate that a
high level of synchronization accuracy can be achieved when
considering practical edits such as scene addition, removal
and even re-ordering. Future work will validate the perfor-
mance of the proposed algorithms over real-world data.
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