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Volkan Kılıç, Mark Barnard, Wenwu Wang, and Josef Kittler

Centre for Vision, Speech and Signal Processing, University of Surrey, UK
Emails:{v.kilic, mark.barnard, w.wang, j.kittler}@surrey.ac.uk

ABSTRACT

We present a robust and efficient audio-visual (AV) approach
to speaker tracking in a room environment. A challeng-
ing problem with visual tracking is to deal with occlusions
(caused by the limited field of view of cameras or by other
speakers). Another challenge is associated with the particle
filtering (PF) algorithm, commonly used for visual tracking,
which requires a large number of particles to ensure the dis-
tribution is well modelled. In this paper, we propose a new
method of fusing audio into the PF based visual tracking.
We use the direction of arrival angles (DOAs) of the audio
sources to reshape the typical Gaussian noise distribution of
particles in the propagation step and to weight the observa-
tion model in the measurement step. Experiments on AV16.3
datasets show the advantage of our proposed method over the
baseline PF method for tracking occluded speakers with a
significantly reduced number of particles.

Index Terms— Particle filter, visual tracking, DOAs

1. INTRODUCTION

Tracking of multiple moving speakers in indoor environments
has received much interest in the fields of computer vision and
signal processing in the past decades. Speaker tracking may
be achieved in a single modality domain through video or au-
dio. Video tracking is generally accurate, but it suffers from
a limited field of view, occlusions, and changes in appearance
and illumination. On the other hand, audio tracking is not re-
stricted by these limitations, but it is prone to the errors caused
by acoustic noise, room reverberations and the intermittency
between utterance and silence. As shown in some already
published works (see Section 5), fusing both audio and visual
modalities can provide more robust tracking in comparison to
the use of only a single modality, as is the focus here.

We propose a new algorithm for joint audio-visual (AV)
tracking based on particle filtering (PF). In this algorithm, the
direction of arrival angles (DOAs) of the sources, estimated
from microphone recordings are used to reshape the distri-
bution of the particles in the propagation step and to weight
the observation model in the measurement step of the visual
tracker. We show in our experiments that incorporating au-
dio information in this way, not only addresses the occlusion
problem, a challenging scenario in visual tracking, but also

significantly reduces the number of particles required in vi-
sual tracking to robustly model the distribution of the particles
and the estimation of the state vector.

The following section introduces PF based visual track-
ing. Our proposed algorithm is given in Section 3, and ex-
perimental results are presented in Section 4. Related work is
discussed in Section 5, followed by the conclusions.

2. PARTICLE FILTER BASED VISUAL TRACKING

The sampling importance resampling (SIR) PF is used to
track the face of the speakers in visual tracking and it has
five steps. First, the particles are initialized by x

(n)
0 ∼ p(x0),

w
(n)
0 = 1

N for n = 1, ..., N . Here N is denoted as the num-
ber of particles and w(n)

0 is the initial weights of the particles.
The PF utilizes a state vector x =

[
x1 ẋ1 x2 ẋ2 s

]T
,

where x1 and x2 are the horizontal and vertical position of
the rectangle centred around the face, ẋ1 is the horizontal
velocity, ẋ2 is the vertical velocity and s is the scale of the
rectangle centred around (x1, x2). In the second step, the
particles are propagated by a dynamic model,

x
(n)
k = Fx

(n)
k−1 + q

(n)
k (1)

where x
(n)
k is the state of nth particle at time frame k =

1, ...,K and q
(n)
k is the zero-mean Gaussian noise with co-

variance Q, q(n)
k ∼ N (0,Q) for each particle. F is the linear

motion model,

F =


1 T 0 0 0
0 1 0 0 0
0 0 1 T 0
0 0 0 1 0
0 0 0 0 1

 (2)

T is the period between two adjacent frames. The particles
are weighted in the third step by the observation model,

w
(n)
k = p(y

(n)
k |x

(n)
k ) = e−λ(D

(n))2 (3)

where y
(n)
k is the observation. The weights are then normal-

ized to ensure that
∑N
n=1 w

(n)
k = 1. The observation y

(n)
k is
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obtained for each state estimate x
(n)
k by the design parameter

λ and D(n) which is the Bhattacharyya distance,

D(n) =

√√√√1−
U∑
u=1

√
r(u)q(n)(u) (4)

where, U is the number of bins used by the histogram, r(u)
is the Hue histogram of the reference image, which is deter-
mined by the user in the initialisation step, and q(n)(u) is the
Hue histogram extracted from the rectangle centred on the po-
sition of the nth particle. In the literature the RGB or HSV
colour model is commonly used. In our case, HSV is used as
it is observed to be more robust to varying illumination. In
the fourth step, the position of the speaker is estimated by:

x̃k =

N∑
n=1

w
(n)
k x

(n)
k (5)

Lastly the resampling procedure is performed to remove the
particles with very small weights and duplicating the parti-
cles with large weights and generate new particle set from{
x
(n)
k , w

(n)
k

}N
n=1

. Then we return to the second step and con-
tinue recursively.

3. PROPOSED ROBUST AND EFFICIENT
AUDIO-VISUAL TRACKER

The visual tracker presented in Section 2 is likely to fail, for
example, when the speaker moves out of the view of the cam-
era. In this scenario, the particles x

(n)
k will converge to the

region on the image frame that is most similar to the face in
color measured by D(n). Such a region can be anywhere in
the image, e.g. the background of the visual scene. To prevent
this, we introduce the DOAs information estimated from au-
dio measurements (Section 3.2) to constrain the propagation
of particles and the weights in the observation model (Section
3.1) of the visual tracker.

3.1. Audio Constrained Visual Tracker

We use the visual PF approach described above to approxi-
mately localise the position of the face and the particles in the
image frame, and also use the audio tracker discussed in Sec-
tion 3.2 to locate the approximate position of the speaker by
estimating the DOAs from the microphone measurements.

We then draw the DOAs line from the centre of the mi-
crophone array to a point (ak, bk) in the image frame k.
This point is projected from the three dimensional point
(A,Bk, C) where A is the distance from the centre of the mi-
crophone array to the wall in metres (which is 1.75 meters in
our experiments), C is estimated as the height of the speaker,
typically chosen as 1.80 metres in our experiment, and Bk is
calculated as

Bk = tan(θk ×
π

180
) ·A (6)

where θk is the DOA (azimuth) angle (in degrees) of the
speaker estimated from the audio frame that is synchro-
nised with image frame k. The Euclidean distances dk =[
d
(1)
k ... d

(N)
k

]T
of the particles to this line are then cal-

culated, and used to derive the movement distances d̂k which
guide how much distance the particles should be moved to-
wards the DOA line,

d̂k =
dk � dk
‖dk‖1

(7)

where d̂k =
[
d̂
(1)
k ... d̂

(N)
k

]T
and � is the dot (element-

wise) product and ‖.‖1 is the `1 norm. This information is
then used to reshape the particle distribution during the prop-
agation step in (8).

The reliability and accuracy of DOAs, however, can be
affected by the noise within the audio measurements. To
counter these effects, we adjust the contribution of audio
to the calculation of particle propagation and importance
weighting by using a weighting parameter ξk. To this end,
we choose the image patch q(u) centred on the estimated po-
sition and calculate ξk as the distance between q(u) and the
reference image patch r(u), by substituting q(u) for q(n)(u)
in (4). The dynamic model given in (1) is then revised to

x̂
(n)
k = x

(n)
k ⊕ d̂(n)k tan(θk)ξk (8)

where ⊕ is the element-wise addition. The importance
weights are also adapted using d̂(n)k and ξk as follows:

ŵ
(n)
k = (e−λ(D

(n))2)
‖dk‖1
d
(n)
k

ξk (9)

It is then normalized to ensure that
∑N
n=1 ŵ

(n)
k = 1. Posi-

tion estimation follows the weighting step and it is calculated
using (5). Then the resampling step is performed to generate
the new particles x

(n)
k from the set

{
x̂
(n)
k , ŵ

(n)
k

}N
n=1

. The
pseudo code of proposed algorithm is given in Table 1.

With the proposed modifications in (8) and (9), the track-
ing algorithm preserves the position of the face even if the
visual tracker is lost, due to the use of the DOAs from audio.
Moreover, the weighting parameter ξk mitigates the potential
influence of acoustic noise on the tracking system.

3.2. Audio Detection and Localization

We discuss in this section the estimation of the DOAs and
the enhancement of the estimates using a smoothing process
based on the Auto-Regressive (AR) model.

To estimate DOAs, we use a two-step method proposed in
[1]. The first step consists of a sector based combined detec-
tion and localization. In this step the space around a circular
microphone array is divided into a number of sectors. At each
time frame for each sector an activeness measure is taken us-
ing the SAM-SPARSE-MEAN approach [2]. This measure
of activeness is then compared to a threshold in order to de-
termine whether there is an active source in that sector. In
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Table 1. Proposed Algorithm
Initialize: N , Q, U , T , F, λ, r(u), x(n)

0 , w(n)
0 , k

while k < K do
Propagate particles: x(n)

k = Fx
(n)
k−1 + q

(n)
k

Calculate D(n) using equation (4), for n = 1...N

Weighting: w(n)
k = e−λ(D

(n))2 , for n = 1...N
Estimate target position using equation (5)
Calculate ξk using equation (4)
Get corresponding DOA angle θk

Calculate distances dk =
[
d
(1)
k ... d

(N)
k

]T
Find movement distances: d̂k = dk�dk

‖dk‖1

Re-propagate particles: x̂(n)
k = x

(n)
k ⊕ d̂(n)k tan(θk)ξk

Re-weighting: ŵ(n)
k = (e−λ(D

(n))2)
‖dk‖1
d
(n)
k

ξk

Re-estimate target position using equation (5)
Resampling: Generate x(n)

k from the set
{
x̂
(n)
k , ŵ

(n)
k

}N
n=1

k = k + 1
end

the second step a point based search is conducted in each of
the sectors labelled as having at least one active source. The
localization uses a parametric approach [1], the location pa-
rameters are optimized with respect to a cost function such as
SRP-PHAT [3].

Then, we perform a third order AR model to reduce the
noise in the estimate of the azimuth.

θk =

3∑
i=1

ϕiθk−i + εk (10)

where ϕ1,...,ϕi are the parameters of the model and εk is
white noise.

4. EXPERIMENTS

4.1. Setup

The proposed algorithm was tested using the AV 16.3 cor-
pus developed by IDIAP Research Institute [4]. The corpus
consists of subjects moving and speaking at the same time
whilst being recorded by three calibrated video cameras and
two circular eight-element microphone arrays. The audio was
recorded at 16 kHz and video was recorded at 25 Hz. They
were synchronized before being used in our system. Each
video frame is a colour image of 288x360 pixels. The corpus
is annotated for speaker position which allows us to measure
the accuracy of each tracker and compare the performance of
the algorithms. To do this, the tracking error between the es-
timation and the ground truth is calculated as the Euclidean
distance in pixels. The error for frame k is the average of the
errors from frame 1 to k. In the sequences, the speakers wear
a ball for annotation but in our application this ball is never
used. We used two single speaker sequences (sequence 11,

Fig. 1. Sequence 11 (camera #1): Speaker disappears for a
while and re-enters to the scene.

Fig. 2. Sequence 24: Multiple speakers with occlusion.

cameras #1 and #3) which have 817 and 769 frames and one
multiple speaker sequence (sequence 24, camera #1) which
has 1201 frames to test our proposed algorithm. We are only
able to show annotated audio with ground truth part of the
sequences in the result.

In all simulations the number of particles, N , is selected
to be 10. Covariance matrixQ is a diagonal matrix with σ2 =
50. This is used as the standard deviation for both the position
and velocity. T is the period between frames, which equals
0.04 seconds and λ in (3) is chosen as 150. The number of
bins used for the Hue histogram is 8.

4.2. Results and Analysis

We first demonstrate our approach on two challenging sce-
narios: a single speaker (Sequence 11, camera #1) moving in
and out of camera view, and multiple speakers (Sequence 24,
camera #1) occluding each other.

The tracking results for the single speaker sequence are
given in Figure 1. In the first row, the classical PF approach
results are given and as seen from the frames, when the
speaker comes back after disappearing for a while, the tracker
fails to track the face, but locks onto the hand of the speaker.
In contrast, our proposed algorithm resumes tracking after
the speaker reappears as shown in the second row. The plot in
Figure 3 (a) shows the tracking error for this sequence. Since
the ground truth data does not start from the first frame, the
average error is calculated starting from frame 71 where the
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(a) (b)

Fig. 3. In (a) and (b) performance of algorithms are given for
sequence 11 (camera #1) and sequence 24, respectively.

classical approach has already lost tracking, but our proposed
algorithm continued tracking.

The results for sequence 24 are given in Figure 2, where
one speaker is occluded by the other. Our algorithm (in the
second row) resumes tracking after the occlusion finishes. It
can be seen that, with our proposed algorithm, the speaker’s
identity is preserved after the occlusion. In Figure 3 (b), the
average error for this sequence is shown and after the 350th

frame the classical approach fails, but our proposed algorithm
continues tracking with a small errors.

We also performed experiments by changing the number
of particles: 10, 20, 30, 40, 50, 75, 100, 150 and 200 for all
the three sequences. The results for sequence 11 (camera #1),
sequence 24, and sequence 11 (camera #3) are shown in the
subplots (a), (b) and (c) of Figure 4 respectively. The average
error of all three sequences is shown in Figure 4 (d).

It can be seen that even for high numbers of particles the
classical approach fails for sequence 11 (camera #1) and se-
quence 24. Sequence 11 (camera #3) features a person mak-
ing a variety of rapid movements, despite the fact that no oc-
clusion is involved. From Figure 4 (c), we can observe that
given a large number of particles, the visual tracker perform
almost equally well as our proposed method. However, when
the number of particles is reduced significantly, e.g. when
N = 10, using the classical PF method, the tracking errors
increase dramatically, while our proposed algorithm contin-
ues to show excellent performance.

5. RELATED WORKS

The problem of tracking and localization of speakers in en-
closed spaces using AV information has recently received
much attention. Many approaches have been proposed by
researchers and one of the most popular is the PF. PF became
widely used in tracking after being proposed by Isard and
Blake [5]. Much success has been achieved in visual tracking
[5], [6], [7] and audio tracking [8], [9]. It has been shown in
many studies [10], [11], [12], [13] using AV data in tracking
gives more reliable results than using each individually. How-
ever, it is crucial to effectively fuse AV data. To solve this
problem data association and fusion algorithms have been
developed. They have been implemented with a PF in [7] as

(a) (b)

(c) (d)

Fig. 4. Performance comparison between the proposed and
baseline methods versus the number of particles N .

a good example of data association and in [10], [11], [13] as
examples of fusion algorithms. In this study, our proposed
tracker is mainly based on visual data, but audio data is also
used to enhance the visual tracker in order to improve its
robustness in challenging cases such as occlusion but also
reduces considerably the number of particles used in track-
ing. To the best of our knowledge, the algorithm presented
in this paper is the first to constrain the number of particles
with audio information in visual speaker tracking within a PF
framework.

6. CONCLUSION

In this study, we presented a new audio-visual tracking algo-
rithm in which audio information is used to modify particle
propagation and the weights assigned to the particles. Our
proposed algorithm was tested on both single and multiple
speaker sequences. It showed significantly improved track-
ing performance over the classical approach for the scenar-
ios where the speaker is either occluded by other speakers or
out of the range of camera view. We demonstrate that by us-
ing audio information we can significantly reduce the number
of particles, whilst maintaining good tracking performance.
This approach has the potential for handling weight degen-
eracy and particle impoverishment problems due to the sig-
nificant reduction in the number of particles being used in
tracking, which we will study in the future.
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