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ABSTRACT

In this paper we present a new solution to the problem
of speaker tracking among people where occlusions occur
(disappearance and non-speaking). In a normal conversation
between two or more people, we learn speaker mel-cepstral
coefficients (MFCC) and incorporate this information into a
sequential Bayesian audio-video position tracker. The joint
video-to-audio data association step is thus improved and we
achieve robust person recognition which in turn aids track-
ing performance. We provide comprehensive evaluation via
simulations and real data quoting tracking accuracy, precision
and diarisation error rate (DER) compared to ground truth.
For simulate and real experiments in an open space the trajec-
tory tracking performance increases by 20% measured against
ground truth using our approach. As a further enhancement
versus the state-of-the-art, speaker identity recognition at a
distance is improved by 20% by exploiting audio-video local-
isation cues.

Index Terms— Distant Speaker Recognition, Speaker
Tracking, Multimodal tracking, MFCC, EKF

1. INTRODUCTION

Bayesian multi-modal speaker tracking based on audio and
video positional data has been shown to effectively address
most of the common problems that audio-only and video-only
tracker normally faces in meeting-room applications (e.g. di-
arisation) [1, 2, 3, 4, 5, 6]. There are difficulties scaling these
approaches up to larger spaces. In fact, from structured and
extensive sensor networks (lapel/arrays of microphones and
multi/panoramic cameras strategically positioned) and small
area of interests (4 − 5 m2) focus is moved towards spar-
ely displaced sensors and analysed spaces which are double
or three times the size of the previous ones. In such larger
dynamic scenarios, when people occlude each other, as in
normal social interactions, systems cannot distinguish the ac-
tual speaker location and identity. This is principally because
video tracks merge [7, 8, 9].
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Fig. 1: A schematic of the system presented in this paper. Constituent parts
of this diagram are referred to explicitly in the text (e.g. “arrow 1”).

In confined meeting rooms audio-video (AV) speaker seg-
mentation, i.e. correctly inferring over time who is the actual
speaker, is done via lip detection and head movements plus
GCC or SRP-PHAT audio localisation cues and voiceprint
recognition techniques [6, 5, 10, 11, 12]. However, in more
general scenarios (larger spaces) people are often recorded
from a distance, meaning they: (a) do not face the cameras,
and (b) their voices are captured from microphones widely
scattered (rather than in an array or worn on the person). If
targets get too close to one another speaker position is no
longer resolvable by the AV estimator using time-difference
of arrival [13]. Proximity-based association algorithms [7, 8,
9] fail to correctly match noisy audio and video data streams.
One approach to solve this would be to make recourse to full
3-D tracking but the system complexity may become very
high.

The grand aim of our work is to recognise person’s “role”
in a larger social interaction (e.g. a party). This task normally
involves non-trivial data association [14] and blind source
separation [15]. We first tackle, in this paper, a slimmed-down
version of this problem. The novel system we present here
can localise and recognise speaker identity among two people
in difficult circumstances. We integrate speaker recognition
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(SR) to make an audio-video tracking (AVT) system (based
on Kalman filtering) robust to close audio sources (conversa-
tion). In summary, our work results in the following contri-
butions: a) detection and tracking of speaker identity through
occlusion; b) a novel smoothing prior (conversation model
(CM)) increases the speaker recognition detection rate at a
distance; c) exploitation of a small sensor network and fast
visual tracking algorithms (using a single camera and 8 mi-
crophones) which works in a 12m2 area where people freely
move; d) evaluation vs. the state-of-the-art using recognised
metrics for multi object tracking (2006 and 2007 CLEAR
dataset and speech recognition 2006 NIST dataset), in con-
trast to the closest papers to ours in the literature [6, 5, 8, 9].

2. THEORY

A schematic diagram of our system is shown in Figure 1. We
now describe in more detail the components of this system.

2.1. Audio-Video Tracking

A description of the basic speaker trajectory 2-D audio-video
tracking (AV) unit can been found in our previous work [16].
We repeat the salient details for clarity. The posteriors of an
extended Kalman filter (EKF) audio tracker and of an inde-
pendent video tracker based on a GPU-accelerated particle
filter with ellipsoid models for people [17], xa and xv , are
fused in a common Kalman filter node (arrow 1, Figure 1).
Hence, its joint output xav = P−1

a xa+ P−1
v xv , is fed back

into the individual audio and video trackers to improve the
single modality estimation (arrow 2).Assuming people speak
alternatively, as in a normal conversational mode, to a single
audio signal za, corresponds several video measurements at a
time, zvi , one for each of the N detected targets. By basing
the audio-to-video data association step on spatial proximity,
i.e. nearest neighbour (NN), speaker segmentation and recog-
nition can also be obtained (arrow 3) as long as people are
resolved by the AVT and its measurements can be consid-
ered robust with respect to the speaker motion model. (This
is not possible where speakers are close and is the prime mo-
tivation for introducing MFCC to the audio track). In par-
ticular, the speaker identity inferred by the AVT is equal to
the one of the i-th target if SAV = argmaxi

{
p(za, zvi |

x)
}
, i = 1 , ...,N .

2.2. Text-Independent Speaker Recognition

When more people are detected in an image and occlusions
happen, appearance-based video trackers can no longer sup-
port the audio track hypothesis. This makes it for different
information to be integrated. As microphones already gather
audio information for AVT purposes, the frequency content
of at least one of them can be used to segment over time the

speaker and recognise their identity (ID).
The speaker recognition (SR) module performs text-independent
speaker recognition based on Gaussian Mixture Models
(GMM) [18] (arrow 4), under the assumptions that there
exist M = N possible speaker ID, whose voiceprints models
p(sj) are learned before the experiment is performed. We
also assume that no false measurements nor missed detec-
tions are present. In particular, the speaker models are cal-
culated on the base of 60 s training signal for each speaker.
From every voice sequence 12 sets of mel-cepstral coeffi-
cients (MFCC) are extracted. Each model is represented
by a 16-mixture GMM whose parameters are estimated by
the extracted acoustic MFCC vectors. Particularly, an EM
algorithm iteratively estimates them to monotonically in-
crease the likelihood of the proposed GMM. It converges
when the model likelihood reaches a local maximum. The
test conversation sequence, not recorded in matching con-
ditions, is framed in small speech-only sub-segments which
are considered to be long enough to detect a speaker change.
For each speech sub-segment its MFCCs are extracted and
compared to the available database of speaker models to de-
termine the likelihood of the particular speaker SSR to be
the one who uttered the considered speech segment sj i.e.

SSR = argmaxj

{
p(S | sj)

}
, j = 1 , ...,M = N . Speaker

DER results are presented in Tables 1 and 2 in column ‘Ex-
periment’.

2.3. Speaker Conversation Model

In our experiments, speakers can be at most 2m distant from
the sensors. Distance has been proved to be a critical factor
to diarisation error rate (DER) accuracy. In [19] a 2m distant
microphone shows a≈ 20% DER. Thus, we further introduce
a new speaker switching probability to model the amount of
time that has to be elapsed before a person stop talking once
they have started (arrow 6) i.e. SCM = argmaxj

{
p(S |

uj)
}

. This acts as a smoothing prior on speaker ID recog-
nition. In particular, we assume that the amount of time we
have to wait before a speaker uj finishes talking is propor-
tional to the elapsed time t. We define this as an exponential
probability density function i.e. p(uj) = exppdf(λ, t). The
remaining potential speakers M − 1 are characterised by a
probability of starting the conversation which is given by the
complementary speaking probability scaled by M − 1. The
CM is triggered by the j − th speaker ID detection which is
given by an averaged decision fusion of the AVT and the SR
modules i.e. SCM (0) = wAV SAV +wCM SCM (arrow 5),
where wAV and wCM are evaluated on the base of the module
confidence in inferring its decision.

2.4. Combining Tracking and Recognition

Once an identity i has been assigned to every target in a image
frame, the person recognition decision derived from SR+CM
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Experiment System MOTP (m) MOTA (%) DER (%)

‘InOut’ AVT 0.34 79 50.61

SRDER = 8.3%
AVT + SR 0.27 80 17
AVT + SR + CM 0.27 80 4.8

‘CloselySpaced’ AVT 0.25 89 47

SRDER = 10.7%
AVT + SR 0.15 96 16.9
AVT + SR + CM 0.11 96 7.3

‘Crossing(Incorrect Split)’ AVT 0.08 100 44.6

SRDER = 9.5%
AVT + SR 0.08 100 9.7
AVT + SR + CM 0.08 100 3.6

‘Crossing(Merge on Listener)’ AVT 0.10 100 26.5

SRDER = 9.5%
AVT + SR 0.09 100 12.1
AVT + SR + CM 0.07 100 2.4

Table 1: Simulations results.

Experiment System MOTP (m) MOTA (%) DER (%)

‘Single Speaker’
Audio only 0.69 27 −

SRDER = 17.68%
Video only 1.30 45 −
AVT 0.25 94 4.70
AVT+SR 0.25 94 4.70

‘Abandoning’ AVT 0.25 91 43.7

SRDER = 23.5%
AVT + SR 0.30 84 23.5
AVT + SR + CM 0.30 84 2.2

‘CrossingReal’ AVT 0.47 72 14.8

SRDER = 20.6%
AVT + SR 0.56 55 9.63
AVT + SR + CM 0.55 55 2.2

Table 2: Real experiment results.

may be used in order to recover ID tracking when occlusions
occur. When competitive association hypotheses exist for the
AVT (i.e. the AVT confidence drops below a certain thresh-
old), the third part voiceprint decision is averaged, according
to their confidence value defined as in Jin et al. [19]. The CM
decision is added in (arrow 7) so as to discriminate among the
different video data i.e. S = wSR SSR + wCM SCM . The
speaker ID is first fed back into the AVT to aid the resolving
of the NN association (S = SAV = i =⇒ zv= zvi ) and hence
the speaker recognition plus the tracking (arrow 8). Secondly,
it is sent to the video tracking unit to indirectly re-assign the
correct targets appearance models zvi (t+1) = xav (t) , thus
resolving the occlusion (arrow 9).

3. EXPERIMENTATION AND RESULTS

We now present comprehensive results on simulated and real
data. No comparison is made for them other than against
our original system since, as far as we are aware, no other
works exist with same experiment setups. In order to validate
the proposed concept we simulate a 10 × 10 × 6.5 m3 open
room, characterised by a reverberation time (T60 = 0.3 s),
in which two people talk alternatively for 60 s within an area
of interest of 3 × 4 m2. In the room there are two speak-
ers, only one of whom is active at any given time. Only 1
camera and 4 pairs of directional microphones are used. Full
details can be found in [16] as well as all the details about
the synchronisation and calibration of the sensors and the
filters parameters. Specifically, filters were initialised using
the video detected position of their correspondent targets and
static matrices Q and R [20], whose values were chosen on
the basis of an optimisation step. At last the CM parameters
were learned from similar sequences, testing different values.
Performance is evaluated using position tracking precision
(MOTP) and accuracy (MOTA) [21]. The tracker is consid-
ered to have correctly hit the target if the distance between is
output and the ground truth is within 50 cm. We also com-
pute the diarisation error rate (DER) expressing the speaker
error only [22]. The initial AVT results [16] are compared
against a half-way AVT+SR solution which does not include
the smoothing prior and to the final AVT+SR+CM solution to
firstly shows benefit of introducing the SR module only and,

secondly, of the smoothing prior (CM).
Simulated Experiment ‘InOut’ considers a person speaking
Speaker1 inside the FOV and leaving it from a side where at
the same time another speaker Speaker2 is entering. Then,
the last also leaves the FOV. The difficulty here is given by
the fact that the speakers look alike so that the video tracker
cannot distinguish between the targets. Our objective is met
as it is shown the AVT cannot correctly identify the speaker
ID whereas the AVT+SR+CM can.
Simulated Experiment ‘Crossing’ simulates two people
walking along crossing diagonal trajectories. Speaker1
speaks for the first half of their trajectories, while Speaker2
does it for their second half. The crossing points represents a
potential occlusion zone for the camera, meaning the detected
target trajectories could at worse either merge on the listener
as in the‘Crossing(Merge on Listener)’experiment, or diverge
incorrectly in that area as in‘Crossing(Incorrect Split)’. In
both cases, the AVT+SR+CM solution can still track and
recognise the actual speaker whereas the AVT is mistaken.
Simulated Experiment ‘CloselySpaced’ reproduces a long
term occlusion for the camera. In particular, both targets tra-
jectories are close (50 cm) and parallel to the camera image
plane. The conversation is segmented as for the previous
experiment. Being one of the target invisible to the video
trackers for almost the whole experiment, the AVT track-
ing error is always quite large as the NN data association is
compromised along the whole speaker trajectory. In turn, the
AVT + SR + CM system, thanks to the external voiceprint
information, can resolve the association notably decreasing
the tracking error as well as the speaker error.
Results of tracking and speaker ID recognition are presented,
averaged over 100 Montecarlo runs, in Table 1. Performance
improvements are shown in Figure 2.
Having proved the concept with simulations, we move to a
real indoor room where people can freely move. Audio and
video data was gathered in a typical open office room, whose
size is 111.44 m2, where the area considered of interest is
12 m2 (as seen in Figure 3(a)). Also we made no attempt to
reduce normal background noise (desk fans, footsteps, talk-
ing etc.). A significant reverberation time (T60 ≈ 0.5 s) was
measured. Ground-truth data was hand labelled considering
feet position to 10 cm of accuracy on a ground plane common
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Fig. 2: Averaged filters performances for simulated and real experiments.
MOTP improvement reaches 20% for the AVT+SR+CM algo as the simu-
lations were specifically chosen to have low AVT tracking and recognition
errors. Nevertheless, it must be noted that this is not quite the same for the
real results as they replicate different scenarios were the AVT on its own is in-
correct on ID recognition only. As for the DER, AVT+SR+CM outperforms
the AVT+SR because of the conversation smoothing prior. Moreover real re-
sults are better than the simulated ones as the real experiment SR accuracy is
lower than the SR accuracy in the simulations (f.e. 90.5% vs 79.4%).

to the cameras and the microphones. Synchrony of data was
obtained by processing audio and video signals accordingly
to the cameras frame rate 7.5Hz. The point of this section is
actually proving that this algorithm can maintain and recover
tracking ID. Therefore we describe the results in terms of
ID recognition rather than the precision which is obviously
not high in such a challenging scenario if any further signal
processing is used.
Real Experiment ‘Single Speaker’ considers a person speak-
ing along a rectangular trajectory for two times its perimeter,
appearing and disappearing from behind an occlusion. Re-
sults as presented in Figure 3.
Real Experiment ‘Abandoning’ shows a person walking and
talking along a rectangular trajectory disappearing behind an
occlusion. Then a second person, who looks alike the first
one and who is speaking as well, reappears from behind the
occlusion and walks along the rectangular trajectory till the
point he disappears again. Visual results are presented in
Figure 4.
Real Experiment ‘CrossingReal’ shows two people with
very similar appearance walking while having a conversation.
They meet along a diagonal where they keep on walking past
each other causing an occlusion in the resulting image. Re-
sults are presented in Figure 5.
Results of tracking and speaker ID recognition are presented
in Table 2. Improvements are shown in Figure 2.

4. CONCLUSION AND FUTURE WORK

AV position-based speaker tracking and recognition at a
distance is insufficient when speakers are close because of
ID mismatches. We have shown that by further integrating
voiceprint information and a conversation model the accuracy
of speaker localisation increases by 38%. Also using local-
isation cues, speaker ID recognition improves on average
by 20% in real room scenarios. This results in better scene
understanding, which was our stated goal, and also AV diari-
sation. Given the high correlation between speech and body
gestures, we are currently working on learning correlations
parameters by observing speakers gestures to further improve
speaker localisation and ID recognition.
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Fig. 3: Real experiments layout (a) and ‘Single Speaker’ tracking results.
In (b) the video tracker only loses the speaker track when a long occlusion
occurs. In turn, (c) shows the AVT correctly locating the speaker through
the occlusion. Finally (d) shows speaker track recovering - the video tracker
alone is not capable of doing this.

(a) (b) (c)
Fig. 4: ‘Abandoning’ Tracking Results. (a) Shows the AVT locked onto
Speaker1. In (b) Speaker2 appears while Speaker1 has left the scene. The
tracking ellipse is still green coloured meaning the AVT cannot make a dis-
tinction between IDs as person appearance models are very similar. In (c) in-
stead, the magenta ellipse indicates the AVT+SR+CM solution can correctly
infer the person ID.

(a) (b)

(c) (d)
Fig. 5: ‘CrossingReal’ Tracking Results. In (a) the AVT correctly identifies
both people ID. In (b) a short term occlusion leads track to merge. This
results in (c) in an ID swap as the ellipses colors have exchanged. On the
other hand (d) presents the AVT+SR+CM result for the same situation i.e.
correct ID recovering after the occlusion.
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