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ABSTRACT
In a multi-agent data fusion scenario, agents may iteratively ex-
change their states to arrive at a consensus state which signifies ‘gen-
eral agreement’ among the agents. Agent states that are being ex-
changed may have been generated from hard (i.e., physics based) or
soft (i.e., human based evidence. such as opinions or beliefs regard-
ing an event) sensors. Convergence analysis becomes an extremely
challenging problem in such complex fusion environments, which
may involve communication delays, ad-hoc paths, etc. In this paper,
we analyze consensus of a Dempster-Shafer theoretic (DST) fusion
operator by formulating the consensus problem as finding common
fixed points of a pool of paracontracting operators. Due to its DST
basis, this consensus protocol can deal with a wider variety of data
imperfections characteristic of hard+soft data fusion environments.
It also easily adapts itself to networks where agent states are captured
with probability mass functions because they can be considered a
special case of DST models.

Index Terms— Consensus, data fusion, Dempster-Shafer the-
ory, paracontracting operators, multi-agent systems.

1. INTRODUCTION
Background. Mathematical modeling of consensus appears in [1],
and more recently in sensor related research and applications [2–8].
In these works, an agreement is sought among a group of agents,
where the term “agent” refers to sources, which can be either soft
(i.e., human-based sensors) or hard (i.e., physics-based sensors).
Motivation. In a typical consensus setup, agents iteratively exchange
and revise their states until convergence or agreement is reached. In
data fusion networks, convergence analysis is a challenging task be-
cause of the usually nonlinear iterative processes involved (in com-
bining, updating, and/or revising evidence) and communication re-
lated difficulties (e.g., link delays, dynamic and ad-hoc link struc-
ture, etc.).
Relation to Prior Work. Consensus analysis within the context of
data fusion in distributed sensor networks that takes into account
these communication difficulties appears in [2–4, 8]. However, due
mainly to the difficulties associated with nonlinear fusion strategies,
the majority of these consensus techniques utilize a simple weighted
average for belief revision (or state updates) [5, 9].
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The work in [10] on nonlinear asynchronous paracontracting op-
erators provides a methodology for convergence analysis involving
nonlinear operators under various network topologies with link de-
lays and dynamic link structure. Fang et al. [6] exploits this work
to develop asynchronous consensus protocols. This current work of
ours also exploits the work in [10] to develop consensus protocols
and analyze their convergence properties. However, our work dif-
fers from [6] because we use the theoretical underpinnings of [10] to
analyze the convergence of certain Dempster-Shafer theory (DST)
based data fusion strategies, which have been demonstrated to be
more suited for hard+soft fusion scenarios [11–14]. Due to page
length limitations, we omit the proofs of our main results in Sec-
tion 3. These will appear in a future publication. As far as the authors
are aware, our work constitutes the first instance where convergence
analysis of DST data fusion schemes are being studied. The work
in [19] demonstrates how such a consensus may yield valuable in-
formation regarding an agent’s credibility. By acting as a proxy of a
local group of agents, a consensus state may also enable data fusion
to be carried out with a significantly lower computational burden.
These DST convergence results can be extended to the case in which
agents exchange probability mass function (p.m.f.) estimates since
p.m.f.s can be considered a special case of DST.

2. PRELIMINARIES
2.1. DS Theory
Basic Notions. In DST, the total set of mutually exclusive and ex-
haustive propositions of interest (i.e., the ‘scope of expertise’) is re-
ferred to as the frame of discernment (FoD) Θ = {θ1, . . . , θn} [15].
A singleton proposition θi represents the lowest level of discernible
information. Elements in the power set of Θ, 2Θ, form all the propo-
sitions of interest. We use A \ B to denote all singletons in A that
are not in B; A denotes Θ \A.

Definition 1. Consider the FoD Θ and A ⊆ Θ.
The mapping m(�) : 2Θ 7→[0, 1] is a basic belief assignment

(BBA) or mass assignment if
P

A⊆Θ m(A) = 1 with m(∅) = 0.
The belief of A is Bl(A) =

P
B⊆A m(B), and the plausibility of A

is Pl(A) = 1−Bl(A).

DST captures the notion of ignorance by allocating masses to
composite propositions (i.e., a non-singleton proposition). A propo-
sition that possesses non-zero mass is a focal element. The set of
focal elements is the core F; the triplet E ≡ {Θ,F,m(�)} is the
corresponding body of evidence (BoE). While m(A) measures the
support assigned to propositionA only, the belief represents the total
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support that can move into A without any ambiguity; Pl(A) repre-
sents the extent to which one findsA plausible. When focal elements
are constituted of singletons only, the BBA, belief and plausibility all
reduce to a probability assignment.
Data Fusion. Data fusion is the process of combining Ei ≡
{Θi,Fi,mi}, i = 1, 2, to arrive at a new E ≡ {Θ,F,m} rep-
resenting the aggregated evidence.

Definition 2 (Dempster’s Combination Rule (DCR)). With identical
FoDs (i.e., Θ1 = Θ2 ≡ Θ), the DCR-fused BoE, denoted as E ≡
E1⊕E2, is

m(A) =
X

C∩D=A

m1(C)m2(D)/(1−K), ∀A ⊆ Θ,

whenever K =
P

C∩D=∅m1(C)m2(D) 6= 1.

K ∈ [0, 1] captures the conflict between the BoEs being fused.
The DCR’s difficulties in fusing conflicting BoEs are well docu-
mented. The conditional approach [11,13,16] offers an elegant way
for updating evidence while accommodating potentially contradic-
tory evidence and sources possessing non-identical FoDs.

Definition 3 (Conditional Update Equation (CUE)). [19] For
the BoEs Ei, i = 1, . . . , n, the CUE that updates E1 with the
evidence in Ei, i = 2, . . . , n, to generate E , denoted as E ≡
E1 C (E2on · · ·onEn), is

Bl(B) = α1 Bl1(B) +

nX
i=2

X
A∈Fi

β1,i(A)Bli(B|A).

Here, the CUE parameters are non-negative and satisfy α1 +Pn
i=2

P
A∈F2

β1,2(A) = 1.

The conditional operations in the above definitions are imple-
mented using the Fagin-Halpern (FH) DST conditionals [17], which
can be considered the more natural extension of the usual Bayesian
conditional notions [14].

2.2. Theory of Paracontractions
Consensus analysis in multi-agent systems can be formulated as a
special case of finding common fixed points of a (finite) pool of
paracontracting multiple-point operators [6]. Convergence of these
schemes can then be established if the iterations satisfy certain cou-
pling conditions.
Basic Notions. Let D be the domain of interest (e.g., domain of
agent states). A vector ξ ∈ D is referred to as a fixed point of an
operator F : Dm 7→ D iff F (ξ, . . . , ξ) = ξ, where m ∈ N. Further,
the set of all fixed points of operator F is denoted by fix(F ) =
{ξ ∈ D | F (ξ, . . . , ξ) = ξ}. A vector ζ ∈ D is a common fixed
point if ζ is a fixed point common to all operators F ∈ F , viz.,
ζ ∈ fix(F ), ∀F ∈ F .

Let I ⊂ N ≡ {1, 2, . . .} be a set of indices and m ∈ N a
fixed number. Henceforth, we deal with the pool of operators F =
{F i, i ∈ I | F i : Dmi 7→ D}, where mi ∈ N s.t. mi ≤ m, ∀i ∈ I,
and D is closed.

Definition 4. [10, 18]
(i) Paracontracting operator: An operator F : Dm 7→ D is

paracontracting on D w.r.t. a given vector norm || � ||, if ‖F (X) −
ξ‖ < maxj ‖xj − ξ‖, for all X ≡ [x1, . . . ,xm] ∈ Dm and any
ξ ∈ fix(F ), unless X ∈ fix(F ).

(ii) Paracontracting pool of operators: If for all i ∈ I, X =
[x1, . . . ,xmi ] ∈ Dmi and a vector norm || � ||, F i is continuous
on Dmi , then F is said to be paracontracting on D, if for any ξ ∈
fix(F i), ‖F i(X)− ξ‖ < maxj ‖xj − ξ‖, unless X ∈ fix(F i).

(iii) Asynchronous iteration: Let X0 = {x[−`] ∈ D | ` =
1, . . . ,M} be a given set of vectors, where M is the number of
initial conditions. Let S denote the sequence of mi-tuples from
N0 ∪ {−1, . . . ,−M}, where S ≡

˘
s1[k], . . . , smI[k] [k] | I[k]∈I,

s`[k] ∈ N0∪{−1, . . . ,−M} s.t. s`[k] ≤ k, k = 0, 1, . . .
¯

. Then,
for sequences I ≡ {I[k] ∈ I | k = 0, 1, . . .} and S, the sequence
x[k+ 1] = F I[k]

`
x[ s1[k] ], . . . ,x[ smI[k] [k] ]

´
is referred to as an

asynchronous iteration and denoted by (F ,X0, I,S).

Convergence of an asynchronous iteration scheme depends on
the properties of the operators and the coupling among the agents.

Definition 5 (Confluent Iteration). [10] An asynchronous iteration
(F ,X0, I,S) is confluent if there are numbers n0, b ∈ N and a
sequence {bk ∈ N | k = n0, n0 + 1, . . . s.t. k ≥ n0} s.t. the
following is true:

(i) for every vertex k0 ≥ k, there is a path from bk to k0 in
(V, E);

(ii) k − bk ≤ b;
(iii) S is regulated, i.e., s ≡ maxk,`

`
k − s`[k]

´
exists.

(iv) for every i ∈ I, there is a ci ∈ N, so that for all k ≥
n0, there is a vertex wi

k ∈ V , which is a successor of bk and a
predecessor of bk+ci , for which I(wi

k − 1) = i.

The convergence of confluent, nonlinear asynchronous iterations
is governed by

Theorem 1. [10] Let F be a paracontracting pool on D ⊂ Rn

and assume that F has common fixed points, viz., fix(F) 6= ∅.
Then, any confluent asynchronous iteration (F ,X0, I,S) converges
to some fixed point ξ ∈ fix(F).

3. CONSENSUS IN A FUSION ENVIRONMENT
Consider a hard+soft data fusion environment consisting of a set of
sensors/agents N = {A1, . . . ,Am} which interact with each other
at discrete time instances t0 < t1 < · · · < tk < · · · . Here, tk
and k are referred to as the discrete event-based time and discrete
event-based time index [6], respectively. We are now interested in
developing a consensus protocol that is applicable to such scenarios.
Let us proceed as follows.

3.1. Agent Interactions
Convergence rate and the existence of consensus is dependent on the
communication patterns of agents.

Definition 6 (Interaction Topology). Agent interaction topology
refers to the structure of the spatial connectivity among agents
at tk. Let us denote by Qi,j , j = 1, . . . , ni, the jth interac-
tion topology used by agent Ai, for i = 1, . . . ,m. Also, let
Q ≡ {Qi,j |j = 1, . . . , ni; i = 1, . . . ,m} be the set of all in-
teraction topologies used by the multi-agent system.

An interaction topology is said to be fully connected if the agent
updating its state receives information from all the other agents. A
multi-agent system is fully connected if all the interaction topologies
are fully connected. If at least one agent updates its state without
taking information from all the other agents, then the corresponding
interaction topology is said to be partially connected. A multi-agent
system is partially connected if at least one interaction topology in
use is partially connected.

If each agent Ai, i = 1, . . . , n, uses the same interaction topol-
ogy at time tk, k = 0, 1, . . ., then such a system is referred to as
a static multi-agent system. If this does not hold true (i.e., at least
one agent uses different interaction topologies), then such a system
is referred to as a dynamic multi-agent system.

3613



A1

A2 A3

A4 A5

(a) Q5,j is fully connected.

A1 A2

A3

A4

A5

(b) Q5,j is partially connected.

Fig. 1. Spatial connectivity among a set of 5 agents.

3.2. Towards a Rational Consensus
Let us proceed by formally defining consensus.

Definition 7 (Consensus). Let the state of agent Ai at k be given
by Ei[k] ≡ {Θ,Fi[k],mi(�)[k]}, for i = 1, . . . ,m. Each agent
Ai ∈ N starts with an initial state Ei[0] and repeatedly updates its
state (via a valid DST updating strategy) by exchanging information
according to some interaction topology. Then, we say that a con-
sensus is reached among agents in N , if ‖Ei[k] − Ej [k]‖ → 0 as
k →∞ for all Ai,Aj ∈ N , for some norm ‖ � ‖.

The popular Lehrer-Wagner model presupposes a weighted aver-
age of the agent opinions for generating a consensus [1]. Most con-
sensus protocols and techniques available in the literature espouse
this supposition and employ weighted averages of rather simple nu-
merical models (or at most, probability mass functions), and provide
only limited utility especially in hard+soft data fusion environments.
For instance, in hard+soft fusion environments, one often has access
to highly reliable, but vague, estimates of the ground truth (GT). For
example, satellite imagery may be used to reliably identify a vehi-
cle as being an SUV, but it may not be able to determine its exact
model/year; on the other hand, a witness statement can be more spe-
cific but its credibility is questionable.

With these observations in mind, we state several properties that
a consensus protocol must satisfy in generating a meaningful con-
sensus, viz., a rational consensus. Let us denote the GT via the DST
BoE Et

Θ ≡ {Θ,Ft
Θ,m

t
Θ(�)}, where F t

Θ contains only one singleton
proposition (which identifies the GT). Let us a denote a relaible esti-
mate of the GT via the DST BoE Êt

Θ ≡ {Θ, F̂t
Θ, m̂

t
Θ(�)}, where F̂t

Θ

contains only one non-singleton proposition.

Definition 8 (Rational Consensus). Let E∗Θ ≡ {Θ,F∗Θ,m∗Θ(�)} de-
note a consensus reached by the agents inN via some valid consen-
sus protocol. We say that E∗Θ is rational if the following are true.

(i) When the GT is Et
Θ is known: E∗Θ = Et

Θ; and
(ii) When a reliable estimate Êt

Θ of the GT is known: E∗Θ is a
‘refinement’ of Êt

Θ, i.e., ∀B ∈ F∗Θ, ∃C ∈ Ft
Θ s.t. B ⊆ C.

E⇥i
E⇥j

E⇤⇥
Êt
⇥ = Et

⇥

(a) GT known.

E⇥i
E⇥j

E⇤⇥Êt
⇥

(b) GT estimate known.

E⇥i
E⇥jE⇤⇥

Êt
⇥

(c) Unknown GT.

Fig. 2. Pictorial illustration of a DST rational consensus.

We now show that the DST evidence updating strategy CUE
in [11] generates a rational consensus in the sense of Definition 8.

This further strengthens the suitability of the CUE in hard+soft fu-
sion environments because of its functional definition (which can
be given a probabilistic interpretation), flexibility in parameter se-
lection, and most importantly, robustness against contradictory evi-
dence and agents possessing non-identical expertise.

3.3. Consensus Protocols for DST BoEs
Consider the CUE with its parameters selected as in

Definition 9. Let EΘ ≡
˘
E | E = {Θ,F,m(�)}

¯
denote the set

of all possible BoEs defined on Θ. Now, consider the set of n BoEs,
Ei ∈ EΘ, i = 1, . . . , n. Then, the operator FC

ij : En
Θ 7→ EΘ that

updates Ei with respect to interaction topology Qi,j (updating w.r.t
Ej1 , . . . , Ejn ) is defined as

FC
ij (Ej1 , . . . , Ejn) ≡ Ei C (Ej1on · · ·onEjn) ,

where the CUE parameters are given by

αi = Ci, βijk (A) =

(
Cjk mi(A), for Ei ≡ Êt;

Cjk mjk (A), otherwise,

s.t. αi +
X

j1,...,jn

X
A∈Fjk

βijk (A) = 1, where Ci is positive real.

Claim 2. The operator FC
ij : En

Θ 7→ EΘ in Definition 9 is para-
contractive on EΘ w.r.t. any p-norm.

This leads us to the following DST consensus protocol.

Definition 10 (Asynchronous DST Consensus Protocol). An asyn-
chronous consensus protocol generated by the operator FC

ij is
Ei[k + 1]

=

(
FC

ij
`
Ej1 [sj1(k)], . . . , Ejn [sjn(k)]

´
, I[k] = Qij ;

Ei[k], otherwise.

This corresponds to the asynchronous iteration (F ,X0, I,S),
where I = {I[k] ∈ Q}, F = {FC

ij | Qij ∈ I}, X0 =
{Ei[0], i = 1, . . . , n}, and S s.t. s`[k] ∈ N0 s.t. s`[k] ≤ k
for ` = 1, . . . ,m, k = 0, 1, . . .

This protocol allows for CUE-based evidence updating of agent
BoEs in an asynchronous fashion, where agent interaction topolo-
gies can be either fully or partially connected, and either static or
dynamic. Indeed, a very important results that justifies the use of
this protocol in hard+soft fusion environments is

Claim 3. A consensus BoE generated using the protocol in Defini-
tion 10 is a rational consensus in accordance with Definition 8.

We now make use of Theorem 1 to establish convergence. Due
to page length limitations, the proofs of these results are omitted.

3.4. Convergence Analysis
Synchronous Fully Connected Topology. This represents perhaps
the simplest agent setup where each agent is connected to all the
other agents and information is exchanged without any iteration de-
lay (i.e., k − sj [k] = 0). In this case, consensus protocol in Defini-
tion 10 reduces to

Ei[k + 1] = FC
i (E1[k], . . . , Em[k]) , i ∈ 1,m, k ≥ 1. (1)

This iteration is confluent and hence the protocol converges.
Synchronous, Static, Partially Connected Topology. This repre-
sents an agent setup where agents communicate without iteration de-
lays with a network topology that is not fully connected and that does
not change over time. Therefore, not all agents can communicate to
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all the others. In this case, the consensus protocol in Definition 10
reduces to

Ei[k + 1] = FC
i (E1[k], . . . , Emi [k]) , (2)

for i = 1, . . . ,m, and k ≥ 1, where mi = 1, . . . ,m. This iteration
converges as long as the graph union of interaction networks of all
agents is connected.
Synchronous, Dynamic, Partially Connected Network. This repre-
sents an agent setup where agents communicate without iteration de-
lays with a network topology that is not fully connected and changes
over time. Then, the consensus protocol in Definition 10 reduces to

EΘi [k + 1] = FC
I[k]
“
EΘ1 [k], . . . , EΘmI[k]

[k]
”
, (3)

for i = 1, . . . ,m, and k ≥ 1, where mi = 1, . . . ,m.
Given that FC is paracontracting on EΘ, we only need to satisfy

confluence conditions on the equivalent iteration (FC,YO, I,S) to
prove convergence. In a synchronous network, assumption (iii) of
Definition 5, viz., k − s`(k) ≤ s, ∀k ∈ N0, ` = 1, . . . ,m, for
any s ∈ N0 is clearly satisfied. Assumption (i) of Definition 5 is
also clearly satisfied. Thus, if the interaction sequence I is regulated
(i.e., one should be able to find a finite time span at any given time tk,
on which all the agents participate in the consensus process), while
the interaction graphs G[k], k ≥ 1, of the network are repeatedly
jointly rooted, the consensus protocol converges.
Asynchronous Fully Connected Network. This represents an agent
setup where each agent is connected to all the other agents, but the
information exchange is not synchronized (or delayed) (i.e., k −
sj [k] < 0). In this case, the consensus protocol in Definition 10
reduces to

EΘi [k + 1] = FC
i `EΘ1 [s1(k)], . . . , EΘm [sm(k)]

´
, (4)

for i = 1, . . . ,m, and k ≥ 1.
The convergence of this consensus protocol occurs if the itera-

tion delays are finite.
This discussion can also be extended to study asynchronous,

static and partially connected networks. In this case, similar to the
case of static, partially connected networks, one needs to impose
conditions on how agents interact in order to ensure that there is ad-
equate coupling among agents to reach a consensus. This can be
achieved by making sure that graph union of interaction topologies
of each agent is a connected graph. In order to guarantee the conflu-
ence in iterations, one also needs to ensure that the iteration delays
are finite at any given time.

4. NUMERICAL EXAMPLE
Consider a fusion scenario [19] that consists of 5 interacting agents
whose initial beliefs/opinions are given by the following BoEs
Ei[0], i = 1, . . . , 5, with Θi ≡ Θ = {abcde}:

BBA a c d e ac ad abc bc cd cde

m1(�)[0] 0.8 - 0.1 - - - - 0.1 - -
m2(�)[0] - 0.9 - - - - - - 0.1 -
m3(�)[0] - - 0.1 - - - 0.9 - - -
m4(�)[0] - - - 0.1 0.9 - - - -
m5(�)[0] - - - - - 0.9 - - - 0.1

Let us now look at the convergence of this multi-agent system
under the following configurations.

Figure 3 shows the variation of distance ‖E1[k]−E2[k]‖ for each
configuration as the system evolves.

Remarks:
(a) The parameters α and Ci were chosen to be equal for all the

experiments.

Config. Static/ Fully/Partially Delays
Dynamic Connected

1 static fully no
(synchronous)

2 static partially (graph union no
connected) (synchronous)

3 static partially (graph union no
not connected) (synchronous)

4 static partially finite
5 dynamic partially finite
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Fig. 3. Consensus formation (as seen from ‖E1[k]− E2[k]‖).

(b) Config. 3 illustrates that, if the graph union of partially con-
nected topologies is not connected, then no formation of consensus
occurs.

(c) We looked at the finite delay case only, because networks
with infinite delays do not converge, in general.

(d) Networks without delays (Configs. 1 and 2) converge much
faster with less oscillatory behavior.

5. CONCLUSION
This work develops a DST protocol that allows evidence sources in
a multi-agent environment to iteratively exchange their states to ar-
rive at a consensus state. This consensus protocol is well suited for
use in hard+soft data environments where the types and variety of
imperfections call for evidence models that are based on DST. Capi-
talizing on results regarding fixed points of a pool of paracontracting
multiple-point operators, the proposed protocol is shown to gener-
ate a consensus under a wide variety of network topologies (in the
presence or absence of communication delays) and under static and
dynamic conditions.
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