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ABSTRACT

Newly developed HTTP-based video streaming technology en-
ables flexible rate-adaptation in varying channel conditions. The
users’ Quality of Experience (QoE) of rate-adaptive HTTP video
streams, however, is not well understood. Therefore, designing
QoE-optimized rate-adaptive video streaming algorithms remains a
challenging task. An important aspect of understanding and mod-
eling QoE is to be able to predict the up-to-the-moment subjective
quality of video as it is played. We propose a dynamic system
model to predict the time-varying subjective quality (TVSQ) of
rate-adaptive videos that is transported over HTTP. For this purpose,
we built a video database and measured TVSQ via a subjective
study. A dynamic system model is developed using the database and
the measured human data. We show that the proposed model can
effectively predict the TVSQ of rate-adaptive videos in an online
manner, which is necessary to be able to conduct QoE-optimized
online rate-adaptation for HTTP-based video streaming.

Index Terms— QoE, HTTP-based streaming, Time-varying
subjective quality

1. INTRODUCTION

HTTP-based adaptive bitrate video streaming is an alternative to
Real-Time Transport Protocol (RTP)-based methods because of its
firewall-friendly property. Leading companies such as Apple, Mi-
crosoft and Adobe have embraced HTTP-based video streaming and
have proposed protocols [1, 2, 3]. Furthermore, the Moving Pic-
ture Experts Group (MPEG) has issued an international standard for
HTTP-based video streaming called Dynamic Adaptive Streaming
over HTTP (DASH) [4].

In HTTP-based rate-adaptive streaming, a video is first parti-
tioned into video chunks, each several seconds long. Each video
chunk is then encoded into multiple representations at different bi-
trates. The client can select an appropriate representation of each
video chunk to download, thereby adapting the downloading bitrate
to its channel condition. Although HTTP-based streaming protocols
provide flexibility in rate adaptation, designing rate control meth-
ods to optimize end-users’ Quality of Experience (QoE) is difficult,
since the relationship between the served bitrate and the users’ view-
ing experience is not well understood.

One important indicator of QoE is the time-varying subjective
quality (TVSQ) of the viewed videos. This is a time series or tem-
poral record of one or more viewers’ judgments of the quality of the
video as it is being played and viewed.
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In this paper, we propose a method to predict the TVSQ of
videos streamed over HTTP. Predicting the TVSQ of a quality-
varying video is challenging because the TVSQ depends on many
elements of the video including spatial distortions, temporal arti-
facts, and variations in both of these [5, 6]. Our approach to estimate
TVSQ is to begin by predicting the short-time subjective quality
(STSQ) of videos. A STSQ predictor such as those in [5, 7, 8, 9, 10]
operates by extracting perceptually relevant spatial and temporal
features from videos then uses these to form predictions of local
video quality. The basic premise of these models is that STSQ of
videos is a relatively stationary phenomenon. These so-called Video
Quality Assessment (VQA) models do not capture long-term vari-
ations in STSQ nor do they predict human behavioral responses to
these variations.

Here, we propose a method to continuously predict TVSQ us-
ing a dynamic system model fed by an STSQ prediction engine
(see Fig. 1). Quality-varying videos are partitioned into 1 second
long video chunks and the STSQ of each chunk is predicted using
the Video-RRED algorithm [10]. We use Video-RRED because of
its excellent quality prediction performance and fast computational
speed. The computed STSQs are then fed to our dynamic system
model, which predicts TVSQ.

We built a database of quality varying video sequences that sim-
ulate quality fluctuations encountered in video streaming applica-
tions. We then conducted a subjective experiment to measure the
TVSQs of these video sequences. We used this TVSQ database to
determine the dynamic system model. Experimental results show
that the proposed model reliably tracks the TVSQ of video sequences
suffering from time-varying impairments. The estimated TVSQs can
then be used to guide online rate-adaptation strategies towards max-
imizing the QoE of viewers.
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Fig. 1. Proposed paradigm for time-varying subjective quality esti-
mation.

TVSQ estimation is an important research topic in the realm of
visual quality assessment [11, 12, 13, 14, 15, 16]. Pearson et al.
studied the relationship between STSQ and TVSQ for packet videos
transmitted over ATM networks [11]. In [12], Tan et al. proposed
an algorithm to estimate TVSQ. Its performance was evaluated on
a database of three videos, on which the encoding data rates were
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adapted over a slow time scale of 30–40 seconds. In [13], a first order
infinite impulse response (IIR) filter was used to predict TVSQ based
on per-frame distortions, which were predicted by spatial and tem-
poral features extracted from the video. This method was shown to
track the dynamics of TVSQ on low bit-rate videos. In [14], an adap-
tive IIR filter was proposed to model TVSQ. Since the main objec-
tive of [14] is to predict the overall subjective quality of a long video
sequence using the predicted TVSQ, performance of this model was
not validated against measured TVSQ. In [15], the authors studied a
temporal pooling strategy that maps STSQ to the overall visual qual-
ity using a model of visual hysteresis. As an intermediate step, STSQ
is first mapped to TVSQ, then the overall quality is predicted as a
time-averaged TVSQ. Although this pooling strategy yields good
predictions of the overall video quality, the model for TVSQ is a
non-casual system, which contradicts the fact that TVSQ at a mo-
ment only depends on previous viewing experiences. Instead, their
method seeks to capture the hysteresis effect in the final overall video
quality prediction by incorporating the forward-time effects of the
hysteresis effect. In [16], a convolutional neural network was em-
ployed to map features extracted from each video frame to TVSQ.
The predicted TVSQs were shown to achieve a good correlation with
measured TVSQ values on constant bitrate videos.

Unlike existing TVSQ prediction methods [11, 12, 13, 14, 15,
16], our proposed TVSQ prediction method is designed for HTTP-
based video streaming. Newly proposed HTTP-based video stream-
ing protocols like DASH provide the flexibility to adapt video bi-
trates over finer time-scales, e.g. 2-4 seconds, whereas prior mod-
els have mainly targeted videos on which the encoding rate is fixed
[13][16] or changing slowly [12]. In [14] and [15], estimated TVSQ
is used as an intermediate result in an overall video quality pre-
diction process. The performances of these models were not val-
idated against measured TVSQ. Towards filling this gap, we have
designed and built a video quality database specifically configured
to enable the development of TVSQ prediction models of HTTP-
based video streams. The encoding bitrates of the videos in the new
database varies randomly over time scales of several seconds to sim-
ulate quality-varying videos streamed over HTTP. The experimental
results show that our new TVSQ prediction method effectively cap-
tures the TVSQ of the videos in the database.

Here, we introduce some of the key notation. The function qV[t]
will denote the STSQ at the tth second of a video sequence. The
function qP[t] denotes the TVSQ following the playout of the first t
seconds of the video. The notation

(
x
)
t1:t2

denotes the time series(
x[t1], · · · , x[t2]

)
.

2. SUBJECTIVE STUDY

In this section, we present the details of the database construction
and the design of the subjective experiments.

2.1. Database Construction

We built a database of quality-varying videos and we measured
TVSQ using a Single Stimulus Continuous Quality Evaluation (SS-
CQE) method [17]. We created quality-varying video sequences in
four steps as follows:

1. We constructed a 250 second long reference video sequence
by concatenating 25 short videos selected from the new LIVE
Mobile Video Quality Assessment Database [18]. These short
videos are each 10 seconds long, having spatial resolution of
720p (1280× 720) and frame rate 30fps.

2. We encoded the video sequence into 21 compressed versions
having different bitrates. To achieve a wide range of video qual-
ity exemplars, the encoding bitrates were chosen to range from
hundreds of Kbps to several Mbps.

3. We partitioned every compressed version into one second long
video chunks and predicted the Differential Mean Opinion Score
(DMOS) of STSQ using the RRED index [10]. DMOS scores
range from 0 to 100 and higher value indicates worse quality. To
represent STSQ more naturally, so that higher numbers indicate
better STSQ, we used a Reversed DMOS (RDMOS) given by
RDMOS = 100 − DMOS. Broadly, a RDMOS score of less
than 30 on the LIVE database indicates bad quality, while scores
higher than 70 indicate good quality. In the following, we denote
by q`[t] the STSQ of the tth chunk in the `th compressed version.

4. We constructed quality-varying videos by concatenating the
video chunks selected from different compressed versions.

Next, we explain how video chunks are selected from the com-
pressed versions to construct quality-varying videos.

2.2. Constructions of Quality-varying Videos

We seek to be able to predict the TVSQ using the STSQ. To better
understand the relationship between TVSQ and previous STSQ, we
need to broadly sample the space of STSQ and observe the resulted
TVSQ. Thus, we constructed quality-varying videos such that the
STSQs of video chunks vary randomly across time.

Specifically, we first generated a target STSQ sequence {qtgt[t] :
t = 1, · · · , 250}. The target STSQ qtgt[t] was fixed at a constant
value over every 4 second interval. Across the 4 second intervals,
qtgt[t] was designed to vary as an i.i.d random process, whose
marginal distribution is N (50, 162) clipped to the range [0, 100].
Then, we chose the tth chunk of the `∗t

th compressed version, where
`∗t = arg min`

∣∣qtgt[t]− q`[t]
∣∣, as the tth chunk of the constructed

video. Therefore, for the constructed video, we have qV[t] = q`∗t [t].
Since the STSQs of the compressed videos in the database finely
partition the scale of RDMOS, we have qV[t] ≈ qtgt[t].

We note that, in a subjective experiment, there is always a de-
lay or latency between a change in video quality and a subject’s
response. We designed the qtgt[t] to be fixed over 4 second inter-
vals, which are comfortably longer than the subjects’ latency and
short enough to simulate quality variation in adaptive video stream-
ing. We also note that the Video-RRED algorithm is calibrated to
predict the STSQ values of the LIVE video database, which is dis-
tributed as the normal distribution N (50, 102) clipped in the range
of [0, 100]. Therefore, to sample the space of STSQ uniformly, we
design qtgt[t] as obeying the same normal distribution.

We created five 250-second quality-varying videos. Together
with the uncompressed video sequence, the database contains 1500
seconds of videos.

2.3. Subjective Experiment

We conducted a subjective study to measure the TVSQs of the
quality-varying videos in our database. The study was completed
at the LIVE Subjective Testing Lab at The University of Texas at
Austin. Sixteen subjects participated in the study. One of the quality
varying videos was used as the training sequence. The other four
quality-varying videos were used as test sequences. The uncom-
pressed video sequence was also included in the test as a hidden
reference.
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We developed a user interface for the subjective study using the
Matlab XGL toolbox [19]. Video sequences were displayed to the
viewers on a 58 inch Panasonic HDTV plasma monitor at a view-
ing distance of about 4 times the picture height. During the play of
each video, a continuous scale sliding bar was shown at the screen
bottom. The subject could move the bar via a mouse to feedback
his/her TVSQ. The position of the bar was sampled and recorded in
real time as each frame was displayed (30 fps).

2.4. Data Processing

Denote by ci,j [t] the TVSQ score assigned by the ith subject to
the tth chunk of the jth quality-varying video. Let cref

i [t] denote
the TVSQ score assigned to the reference video. We offset the
impact of video content on the TVSQs using coffset

i,j [t] = 100 −(
cref
i [t]− ci,j [t]

)
. Let T = 250 be the length of the test videos and

N = 4 be the number of test videos. We computed the Z-scores of
TVSQ, denoted by zi,j [t], using

mi =
1

N

1

T

N∑
j=1

T∑
t=1

coffset
i,j [t],

σ2
i =

1

NT− 1

N∑
j=1

T∑
t=1

(
coffset
i,j [t]−mi

)2

,

and

zi,j [t] =
coffset
i,j [t]−mi

σi
.

Then we computed z̄j [t] and ηj [t] as the average and standard de-
viation of {zi,j [t], i = 1 · · · 16}, respectively. We found that the
values of z̄j [t] all lie in the range [−4, 4]. Therefore we map z̄j [t] to

the range [0, 100] using qP
j [t] =

(
z̄j [t]+4

8

)
· 100. Correspondingly,

the 95% confidence interval of qP
j [t] is computed as qP

j [t] ± εj [t],
where εj [t] =

(
1.96ηj [t]+4

8

)
· 100.

In the sequel, with some abuse of notation, we suppress the sub-
script j and denote by qP[t] and ε[t] the TVSQ and its confidence
interval, respectively.

3. SYSTEM MODEL IDENTIFICATION

We employ a Hammerstein-Wiener (HW) model to estimate the
TVSQs of quality-varying videos. As shown in Fig. 2, the core of
the HW model is the Output-Error (OE) model (see. [20]), which
is intended to capture the hysteresis inherent in human behavioral
responses to tempral quality variations. At the input and output of
the HW model, two memoryless non-linear functions are employed
to model non-linearities in the human response. The OE model is a
linear dynamic system, which has the following form:

v[t] =

db∑
d=1

bd u[t− d] +

df∑
d=1

fd v[t− d] (1)

where u[t] and v[t] are the input and output of the OE model, respec-
tively. The coefficients b = (b1, · · · , bdb)T and f = (f1, · · · , fdf )

T

are model parameters to be determined. We have found that if the
input and output static functions are chosen as generalized sigmoid
functions [21], then the proposed HW model can predict TVSQ ac-
curately. Thus, we set the input and output functions to be

u[t] = β3 + β4
1

1 + exp (−(β1qV[t] + β2))
, (2)

and

q̂P[t] = γ3 + γ4
1

1 + exp (−(γ1v[t] + γ2))
, (3)

where β = (β1, · · · , β4)T and γ = (γ1, · · · , γ4)T are model pa-
rameters and q̂P is the estimated TVSQ. We let θ =

(
bT, fT,βT,γT

)T
be the parameters of the proposed HW model, and q̂P can be re-
garded as a function both of time t and parameter θ. Thus, in the
following, we explicitly rewrite q̂P as q̂P(t,θ). Next, we show how
to estimate the model parameter θ.

Output Error ModelInput 
           Nonlinearity

Output 
              Nonlinearity

qV[t] qP[t]
u[t] v[t]

Fig. 2. Hammerstein-Wiener model for TVSQ prediction.

3.1. Model Parameter Estimation

To estimate parameter θ, we minimize the error between the mea-
sured TVSQ and the predicted TVSQ. Following [16], we use outage
rate (OR) as the error metric, which is defined as the frequency that
the predicted TVSQ deviates more than twice the confidence interval
of the measured TVSQ. More specifically, we define OR as

J(θ) =
1

T

T∑
t=1

1

(∣∣∣q̂P(t,θ)− qP[t]
∣∣∣ > 2ε[t]

)
, (4)

where 1(·) is the indicator function. To minimize J(θ), we employ a
gradient-descent algorithm to determine the model parameters. The
gradient of the indicator function 1(|x| > 2ε) in (4), however, is
zero almost everywhere and thus the conventional gradient-descent
algorithm cannot be applied. To resolve this difficulty, we approxi-
mate the indicator function 1(|x| > 2ε) with

Uν,ε(x) = h(x, ν,−2ε) + (1− h(x, ν, 2ε)) , (5)

where h(x, a, b) = 1/ (1 + exp(−a(x+ b)) is the logistic func-
tion. Note that as ν → ∞, Uν,ε(x) converges to 1 (|x| > 2ε).
The error metric J(θ) can thus be approximated by J(θ) =
limν→∞ Japx

ν (θ), where

Japx
ν (θ) =

1

T

T∑
t=1

Uν,ε[t]

(
q̂P(t,θ)− qP[t]

)
. (6)

The iterative algorithm used for model parameter identification
is described in Algorithm 1. In each iteration, a gradient-descent al-
gorithm is applied to minimize Japx

ν (θ) by moving θ along the neg-
ative gradient of Japx

ν (θ). At the end of each iteration, the parameter

Algorithm 1 Parameter optimization algorithm

Inputs: qV[t], qP[t], θ(0), and ν = 0.8

1: while J
(
θ(i)
)
− J

(
θ(i+1)

)
≥ δ do

2: i := i + 1
3: θ(i+1) = arg minθ Japx

ν (θ) via gradient-descent
4: ν := 1.2ν
5: end while

3604



ν is increased by a factor 1.2. The algorithm terminates when the
decreases in J(θ) between two iterations falls below a threshold δ.
In our implementation, we set δ = 1× 10−5.

3.2. Model Order Selection

According to the parameterizations of the HW model in (1), (2),
and (3), models of lower order are special cases of the model of
higher order. Therefore, in principle, the higher the model order,
the better performance one can achieve. A large model order, how-
ever, may result in over-fitting the data when the model parameters
are learned, which could subsequently degrade the model’s perfor-
mance. To select an appropriate order for the HW model, we em-
ployed the Minimum Description Length (MDL) criterion, which is
widely used in the realm of model identification, machine learning,
and hypothesis testing [22][20]. For simplicity, we set db = df − 1
in (1) and test the models with different df . The description length
of a (df − 1, df)-order model is defined in [20] as

Ldes(df) = J(θ∗df
)

(
1 + (2df − 1)

log (T− df)

T− df

)
, (7)

where θ∗df
is the model parameter of the (df − 1, df)-order model

determined through Algorithm 1. The first multiplicative term in (7),
which is defined in (4) as the OR, represents the ability of a model
to describe the test data. The second multiplicative term reflects the
complexity of the model. Thus, the definition of (7) balances the ac-
curacy and complexity of the model. In Fig. 3, we plot the descrip-
tion lengths of the proposed models under different configurations
of df . It is seen that the minimum description length is achieved at
df = 25. Therefore, we set db = 24 and df = 25.

10 15 20 25 30 35 40 45
0

0.05

0.1

0.15

0.2

df

L
d
e
s

Fig. 3. Description length vs. model order.

4. PERFORMANCE EVALUATION

We employ a leave-one-out (LOO) cross-validation protocol to test
the proposed TVSQ prediction model. Each time, we pick one video
from the four videos of the database as the validation video and train
the model parameters on the other three videos. This procedure is
repeated such that each video in the database is used once as the
validation video.

In Fig. 4, we plot the estimated TVSQ and the 95% confidence
interval of the measured TVSQ. It is seen that the proposed model
can effectively track the variation of measured TVSQ of the four
quality-varying videos in our database. In Table. 1, we show the
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Fig. 4. The estimated TVSQ and the 95% confidence interval (CI)
of the measured TVSQ.

OR, linear correlation coefficient (LCC), and Spearman’s rank cor-
relation coefficient (RCC) of the estimated TVSQ versus the mea-
sured TVSQs. As compared with the TVSQ model presented in
[16], which achieves a OR of 5.6%, the proposed model achieves a
lower average OR of 3.4%. The LCC of the proposed TVSQ model
is 0.827, which is worse than the LCC achieved by the model pre-
sented in [16], which is 0.92. It should be noted, however, that the
comparison is unfair since the model in [16] was tested on constant
bitrate videos, whose quality only varies in a smaller range. Most ex-

Table 1. Performance of the proposed model on the test videos
Video #1 #2 #3 #4
OR 2.8% 3.2% 4.8% 2.8%
LCC 0.843 0.841 0.790 0.832
RCC 0.900 0.838 0.820 0.852

isting rate-adaptive video streaming algorithms are designed to max-
imize STSQ. Using our TVSQ database, we find that the LCC and
RCC between STSQ and TVSQ are 0.414 and 0.357, respectively.
Clearly, simply optimizing for STSQ will not necessarily maximize
the TVSQ of users. The proposed model in this paper helps to under-
stand the TVSQ of quality-varying videos and thus has the potential
to be useful for designing TVSQ-optimized video streaming algo-
rithms.

5. CONCLUSION AND FUTURE WORK

We proposed a dynamic system model for on-line TVSQ prediction.
The accuracy of the model is validated on a database of four long-
duration video sequences. The predicted TVSQ of the model corre-
lates well with the measured TVSQ in subjective studies. For better
model identification and validation, we are going to build a larger
video database and measure TVSQ on a larger set of subjects.
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