
ENERGY-EFFICIENT DESIGN OF REAL-TIME STREAM MINING SYSTEMS

Shaolei Ren‡ Cuiling Lan⋆ Mihaela van der Schaar†

‡Florida International University ⋆Xidian University, China †University of California, Los Angeles

ABSTRACT

In this paper, we propose an efficient solution for supporting
real-time stream mining applications on heterogeneous sys-
tems operating at various processing speeds. Unlike the ex-
isting solutions that (1) rely on accurate knowledge or predic-
tion of the service demand of each individual service request
and (2) only consider a single type of delay constraint (e.g.,
typically, average or maximum delay), we propose an optimal
algorithm, MinEnergy-MD, which determines the processing
speeds for all classifiers based on the probability distribution
of the service demand to minimize the average energy con-
sumption while simultaneously satisfying multiple delay con-
straints. We conduct an extensive study to quantify the per-
formance of MinEnergy-MD.

1. INTRODUCTION

The past few years has witnessed the emergence of a plethora
of real-time stream mining systems, such as video surveil-
lance, online patient monitoring, disaster information man-
agement, video search etc. These applications require pro-
cessing in real-time a large amount of data, and, they must be
optimized for energy efficiency.

Recent trends in hardware and system architectures have
highlighted the usage of heterogeneous systems for energy-
efficient computing (e.g., [6]), and we have witnessed the
emergence of deploying large-scale distributed stream min-
ing system over heterogeneous processing nodes [1]. Our re-
search mainly answers the following question: how to opti-
mally choose the processing speeds for classifiers? Never-
theless, we face the following two challenges that cannot be
addressed by the existing literature:

Unknown service demand: The service demand of each
individual service request (i.e., how many classifiers the
stream will go through) is unknown a priori in stream mining
systems, whereas the existing solutions rely on accurate
knowledge or prediction of the service demand (e.g., [5]).

Multiple delay constraints: In the existing literature
(e.g., [1][3]), two commonly-used delay constraints are the
maximum and average delays, which are inadequate to
characterize the actual delay requirement of real-time stream

This work is supported in part by NSF under Grant #1016081.

mining systems:1 bounding the maximum delay may lead to
an intolerable average delay, whereas only considering the
average delay may cause delay outliers.

For the first challenge, we propose an algorithm, called
MinEnergy-MD, which only requires the probability distri-
bution of resource demand. To capture the delay requirement,
we use multiple Lp norms as the performance metric which,
encapsulating the average and maximum processing delay as
special cases, provide a unified view towards the sensitivity
with respect to the processing delay [11]. MinEnergy-MD
minimizes the expected energy consumption subject to var-
ious Lp norm delay constraints. Our solution makes use of
heterogeneous hardware systems that can be harnessed for
energy-efficient and delay-sensitive stream mining. To evalu-
ate MinEnergy-MD, we build a real-time video stream mining
system consisting of binary classifiers which extract features
from video sequences and classify the video sequences us-
ing the support vector machine (SVM) algorithm. The result-
s show that given the same delay requirement, MinEnergy-
MD reduces the average energy consumption by more than
10% compared to the best homogeneous system as well as the
best-known existing algorithm that only takes into account the
maximum delay constraint.

2. MODEL

In the basic model as illustrated in Fig. 1, we focus on a clas-
sifier chain while noting that classification tree models can be
dealt with similarly (as shown in Section 3.2.3).

Classifier. Conceptually, any stream mining system can
be constructed using a set of binary classifiers that are de-
ployed on (possibly heterogeneous) processing nodes/servers
[1]. An input data is filtered sequentially along the cascad-
ed classifiers and data labeled as “Positive” is forwarded to
the next classifier if any, while data labeled as “Negative”
is dropped.2 We focus on a classifier chain which consists
of N binary classifiers indexed by 1, 2, · · · , N , respectively.
The resource demand of classifier i is quantified in terms of

1Many applications define multiple delay constraints (e.g., both maxi-
mum and average delays) as service level agreements. Our focus is to satisfy
multiple delay constraints simultaneously for one system, rather than sup-
porting different delay performances to multiple systems (e.g., differentiated
QoS work [13]).

2Compared to running multiple classifiers in parallel, sequential classifi-
cation is more efficient as classifiers are activated only when necessary [1].

3592978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013

Sports
nData

NO

YesTeam

Sports
Soccer

NONO

YesYes

Processing

node 1
Processing

node 2

Fig. 1. Illustration of chain of classifiers.

the processing time wi that is required if classifier i is de-
ployed over a reference server. We denote by fi > 0 the
probability that the input data is processed by i classifiers, for
i = 1, 2, · · · , N . Equivalently, f1, f2, · · · , fN can be inter-
preted as the probability mass distribution of service demand
measured in terms of the number of classifiers. We denote
the cumulative distribution function (CDF) by Fi =

∑i
j=1 fi

(with F0 = 0 for completeness of definition). The actu-
al number of classifiers that a particular input data will go
through is unknown in advance, whereas the statistical infor-
mation (i.e., the values of f1, f2, · · · , fN) is readily available
by, e.g., online/offline profiling (e.g., [1][3]) or based on the a
priori selectivity of input streams [1].

Server. We use the general term “server i” to represent
the processing node, over which classifier i is deployed and
executed. In practice, a server may refer to: a physical server
in data centers; a single core on a heterogeneous multicore
processor; a virtual machine in a virtualized system [10]. We
use the term “processing speed” as an indicator of the effec-
tive server performance. We denote the processing speed of
server i by xi ∈ [0, smax] and the power consumption per unit
work by zi = z(xi), where smax is maximum server perfor-
mance due to hardware constraints. Thus, the processing time
of classifier i is given by wi/xi. The energy function of server
i for executing classifier i is ei = e(xi) = z(xi)/xi.

Assumption: The energy function e(x) is a finite, contin-
uously differentiable, and strictly convex function in terms of
x ∈ [0, smax]. �

The assumption been widely considered and validated ex-
tensively by both analytical models and practical measure-
ment studies [3][7]. We use the vectorial expression x =
(x1, x2, · · · , xN) wherever applicable, and express the aver-
age energy consumption of the stream mining system as

ē(x) =
N∑

n=1

 n∑
j=1

wj
z(xj)

xj

·fn =
N∑

n=1

[1− Fn−1]wne(xn).

The term “
∑n

j=1 wj · z(xj)
xj

” represents the energy consump-
tion of an input data that is processed by the first n classifiers
(with a probability of fn, and hence with simple mathemati-
cal manipulation we obtain the average energy consumption.

Note that we only take into account the energy that is actually
consumed by active servers and do not consider the idle serv-
er energy consumption, which may be reduced using various
techniques (such as “power gating” [14]) beyond the scope of
our study.

Job. Each service request carries an input data to be clas-
sified and is referred to as a job. As in [1], we concentrate
on the processing delay: there is no resource contention or
queueing delay. This model has been adopted by various s-
tudies such as such as [3] and captures a lightly-loaded system
and/or a periodic system (e.g., video stream mining system).
To characterize the delay performance, we introduce the Lp

norm [11] expressed as

D(p) =

[
N∑

n=1

(tn)
p
fn

] 1
p

=


N∑

n=1

 n∑
j=1

wj

xj

p

fn


1
p

, (1)

where p ≥ 1 and tn =
∑n

j=1
wj

xj
is the delay of a job that goes

through the first n classifiers. Note that (1) reduces to the av-
erage delay when p = 1, and to the maximum delay when p
approaches ∞. Furthermore, Lp norm is more closely related
to several practical delay constraints. For example, the delay
variance, which determines the predictability of a schedul-
ing algorithm [12], highly dependent on the L2 norm through
the simple expression var(t) = D2(2)−D2(1), where D(2)
and D(1) are obtained by using (1). In addition, if the high-
percentile delay is of interest, we can use various techniques,
such as Chebyshev inequality, to bound the high-percentile
delay performance. Thus, simultaneously considering multi-
ple Lp norm delay constraints is a more appropriate approach
to capturing the actual delay requirement.

3. MINIMIZING ENERGY ALGORITHM

In this section, we present our algorithm, MinEnergy-MD,
and also extend our study in various directions to incorporate
additional practical constraints.

3.1. Problem Formulation

We formulate the energy minimization problem subject to
multiple delay constraints as

P1 : min
x

N∑
n=1

{[1− Fn−1] · e(xn) · wn} (2)

s.t.,


N∑

n=1

 n∑
j=1

wj

xj

pk

fn


1
pk

≤ D̃(pk), (3)

for k = 1, 2, · · · ,K,

0 ≼ x ≼ smax, (4)

where “≽” is an element-wise operator and the processing de-
lay constraints are imposed in the form of K different norms

3593

with 1 ≤ p1 < p2 < · · · < pK ≤ ∞. It can be easily shown
that the problem P1 belongs to convex programming. We
propose a primal-dual method, combined with Gauss-Seidel
method, to derive the optimal solution. First, given fixed dual
variables, we use Gauss-Seidel method to iterative find the op-
timal processing speeds. Then, we use sub-gradient method
to update the dual variables until convergence. Due to space
limit, we omit the algorithm description.

3.2. Extension

Next, we provide a brief discussion of how to incorporate ad-
ditional constraints: (1) limited server speeds; (2) migration
overheads; and (3) classification tree.

3.2.1. Limited server speeds

For some systems (e.g., heterogeneous multicore processor,
DVFS), processing speeds may only be selected from
{s1, s2, · · · , sM}, i.e., x ∈ {s1, s2, · · · , sM}N . One
(heuristic) solution is to round the optimal x∗

i obtained in
MinEnergy-MD to a value in {s1, s2, · · · , sM}. While there
are various methods of rounding, a simple yet effective
method is rounding the obtained continuous x∗

i to the closest
value in {s1, s2, · · · , sN} that is no less than x∗

i . Doing so
will automatically ensure that the processing delay
constraints will not be violated. Other more sophisticated
algorithms, such as branch-and-bound technique, are also
applicable to improve the simple rounding technique.

3.2.2. Migration overheads

Here, we briefly describe how to address the migration over-
head, e.g., a certain amount of time during which no servers
can process the input stream. Let τon be the migration over-
head of migrating a job from server n to server n + 1, for
n = 1, 2, · · · , N − 1, and the delay constraint becomes

{
N∑

n=1

[
n∑

i=1

wi

xi
+

n−1∑
i=1

τoi

]pk

· fn

} 1
pk

≤ D̃(pk). (5)

Therefore, we can reformulate the energy minimization prob-
lem by replacing the delay constraint (3) with (5) to account
for the migration overheads. The solution can be found in a
similar way following our preceding analysis.

3.2.3. Classification tree

In practice, stream mining involves classification trees where
each leaf node represents a label. As in Section 2, we still
index the classifiers from i = 1, 2, · · · , N , although they may
not follow a single chain. There are L different class labels
indexed by l = 1, 2, · · · , L. There is a unique path from the
data entry point to each label l (i.e., from the parent node of

Name Processor Avg. Power Effective
Per Core Speed

A Intel i7-2600 21.00W 1.0000
B Intel i5-3210M 6.26W 0.5840

Table 1. Server configuration with measured power and per-
formances.

the tree to each leaf node). We denote by Cl the set of clas-
sifiers along the path from the data entry point to label l, and
by fl the probability that an input data is classified into label
l.3 Thus, if an input data is classified into label l, the ener-
gy consumption is

∑
i∈Cl

wie(xi) and the processing delay is∑
i∈Cl

wi

xi
, where xi is the processing speed for the node ex-

ecuting classifier i. Therefore, we can formulate the energy
minimization problem for a classification tree as

P2 : min
x

L∑
l=1

[∑
i∈Cl

wie(xi)

]
fl (6)

s.t.,

{
L∑

l=1

[∑
i∈Cl

wi

xi

]pk

· fl

} 1
pk

≤ D̃(pk), (7)

for k = 1, 2, · · · ,K,

0 ≼ x ≼ smax, (8)

which is convex optimization and can be solved similarly
using a primal-dual approach as described in Algorithm 1.
Note that more complex stream mining systems (e.g.,
multiple parallel classification trees) can be decomposed into
multiple classification trees, each of which can be optimized
for energy efficiency by solving P2.

4. PERFORMANCE EVALUATION

In this section, we validate our analysis by performing a sim-
ulation experiment over a chain of five binary classifiers for
human action recognition based on the dataset [15].

4.1. Simulation setup

Due to space limit, we only provide our measurement while
noting that the detailed simulation setup is available in [16].

Server. In our experiment, a “server” refers to an actual
physical server. Neglecting the almost constant power con-
sumption of other components (e.g., memory, harddisk), we
only consider the processor power consumption. We use two
physical servers (shown in Table 1), based on which we quan-
tify the resource demand of each classifier and fit the energy
function in terms of the processing speed to emulate a het-
erogeneous system: (1) we randomly generate input streams
from our data set and classify them using our physical servers;

3A single classifier chain is a special case of classification tree.

3594

(2) we measure the delays and energy consumption; and (3)
we substitute the measured delays and energy consumption
with projected delays and energy consumption, as though the
input streams are processed by other heterogeneous servers
which we desire to have.

Classifiers. We measure the time complexity of each of
each classifier by running them on the reference server (i.e.,
server A) and the results are: 0.6416s, 0.6332s, 0.6332s,
0.6431s, 0.6523s.

4.2. Experimental Results

For the ease of illustration, we consider two commonly used
delays: maximum delay (“MaxD”) and average delay
(“AvgD”). We fix the default maximum delay as 4s (which is
also the period of video sequence arrivals in our experiment)
and vary the average delay.

We first compare a heterogeneous system using
MinEnergy-MD against a homogeneous one. For the
homogeneous system, we choose to use the minimum speed
such that the delay constraints are satisfied and the average
energy consumption is minimized. This algorithm is referred
to as “BestHom”. We plot in Fig. 2 the energy consumption
of the algorithms with different maximum delay constraints
and by varying the average delay constraint. The result
shows that we achieve an energy saving of up to 12% by
using a heterogeneous system with MinEnergy-MD in
comparison with the best homogeneous system. The benefit
of MinEnergy-MD vanishes when the average delay
constraint is dominant, while it becomes more significant as
the average delay constraint loosens. The reason is that, as
shown in Section IV, a homogeneous system (and BestHom)
is optimal if and only if the average delay constraint is
dominant.

To the best of our knowledge, no prior studies have con-
sidered determining the optimal server speeds on a heteroge-
neous system. Here, we compare MinEnergy-MD against the
most relevant existing algorithm, which was first proposed in
the context DVFS [3]. The algorithm, referred to as “Dead-
lineOnly”, only considers the maximum delay constraint to
minimize the energy consumption. If other delay constraints
cannot be satisfied by the solution, then a reduced maximum
delay constraint is considered until all other delay constraints
are satisfied. Fig. 2 shows that MinEnergy-MD can save the
average energy consumption by up to 10% compared to Dead-
lineOnly. The energy saving becomes more significant when
the average delay constraint is more stringent: DeadlineOnly
is optimal if and only if the maximum delay is dominant.

We also conduct sensitivity studies on different service
demand distributions, delay constraints and other
power-performance profiles. The results show that
MinEnergy-MD still outperforms BestHom and
DeadlineOnly in terms of the average energy consumption.
The details are omitted here but can be found in [16].

1.9 2 2.1 2.2
20

22

24

26

28

30

Average Delay (Second)

A
ve

ra
ge

 E
ne

rg
y

(J
ou

le
)

MinEnergy−MD
BestHom
DeadlineOnly

(a) z(x) = 21 · x2.25, MaxD=4s.

1.9 2 2.1 2.2
20

22

24

26

28

30

Average Delay (Second)

A
ve

ra
ge

 E
ne

rg
y

(J
ou

le
)

MinEnergy−MD
BestHom
DeadlineOnly

(b) z(x) = 21 · x2.5 + 2.1,
MaxD=4s.

Fig. 2. Comparing MinEnergy-MD against BestHom and
DeadlineOnly.

5. RELATED WORKS

Heterogeneous hardware systems, such as heterogeneous
multicore processor [6], heterogeneous cluster [2] and even
heterogeneous data center [9], have been shown as an
appealing architecture for energy saving. In such a system, a
key technique to realize the benefit of energy efficiency is of
“job mapping”: “hard” jobs are processed by
high-performance components for performance
improvement whereas “easy” jobs are processed by
low-performance components for energy saving. For
example, with predicted service demand, incoming jobs are
scheduled to the most “appropriate” core based on the
Euclidean distance in a multi-dimension performance metric
space [5], and similarly an appropriate number of servers are
turned on/off to minimize the energy while satisfying the
delay requirement [8][9]. Nevertheless, “job mapping” is not
applicable to stream mining systems, since the service
demand (e.g., measured in terms of the number of classifiers
an input data passes through) is unknown until the
classification has been completed. Some prior studies, such
as [3][4], achieve energy saving based on the probability
distribution of service demand. However, these studies are
insufficient for our research either because they only
consider the maximum delay constraint.

6. CONCLUSION

We investigated energy-efficient scheduling for
delay-sensitive stream mining systems under multiple delay
constraints expressed in the Lp norms. We proposed
MinEnergy-MD to optimally determine the processing speed
for each classifier. We conducted experimental studies to
validate MinEnergy-MD. The results showed that compared
to the best homogeneous system and the best-known existing
algorithm, MinEnergy-MD reduces the average energy
consumption by more than 10% given the same delay
requirement.

3595

7. REFERENCES

[1] R. Ducasse, D. S. Turaga, and M. van der Schaar, “Adap-
tive topologic optimization for large-scale stream min-
ing,” IEEE J. Sel. Topics Signal Process., vol. 4, no. 3,
pp. 620-636, June 2010.

[2] N. Yigitbasi, K. Datta, N. Jain, and T. Willke, “Energy
efficient scheduling of MapReduce workloads on hetero-
geneous clusters,” Green Computing Middleware, 2011.

[3] J. R. Lorch and A. J. Smith, “Improving dynamic voltage
scaling algorithms with PACE,” ACM Sigmetrics, 2001.

[4] R. Xu, C. Xi, R. Melhem, and D. Moss, “Practical PACE
for embedded systems,” EMSOFT, 2004.

[5] J. Chen and L. K. John, “Efficient program scheduling for
heterogeneous multi-core processors,” DAC, 2009.

[6] P. Greenhalgh, “Big.little processing with arm cortex.-
a15 & cortex-a7,” ARM Whitepaper, 2011.

[7] D. Brooks, P. Bose, S. Schuster, H. Jacobson, P. Kud-
va, A. Buyuktosunoglu, J. Wellman, V. Zyuban, M. Gup-
ta, and P. Cook, “Power-aware microarchitecture: design
and modeling challenges for next generation micropro-
cessors,” IEEE Micro, 2000.

[8] B. Guenter, N. Jain, and C. Williams, “Managing cost,
performance and reliability tradeoffs for energy-aware
server provisioning,” IEEE Infocom, 2011.

[9] M. Liu, Z. Liu, A. Wierman, and L. L. H. Andrew, “On-
line algorithms for geographical load balancing,” IGCC,
2012.

[10] S. Kundu, R. Rangaswami, A. Gulati, K. Dutta, and M.
Zhao, “Modeling virtualized applications using machine
learning techniques,” VEE, 2012.

[11] N. Bansal and K. Pruhs, “Server scheduling in the Lp

norm: a rising tide lifts all boat,” ACM STOC, 2003.

[12] A. Wierman and M. Harchol-Balter, “Classifying
scheduling policies with respect to higher moments of
conditional response time,” ACM Sigmetrics, 2005.

[13] Y. Xie and T. Yang, “Cell discarding policies supporting
multiple delay and loss requirements in ATM networks,”
IEEE Globecom, 1997.

[14] J. Leverich, M. Monchiero, V. Talwar, P. Ranganathan,
and C. Kozyrakis, “Power management of datacenter
workloads using per-core power gating,” IEEE Comput.
Archit. Lett. vol. 8, no. 2, pp. 48-51, July 2009.

[15] http://www.nada.kth.se/cvap/actions/

[16] S. Ren, C. Lan, and M. van der Schaar, On-
line supplementary materials for “Energy-Efficient
Design of Real-Time Stream Mining Systems”,
https://www.dropbox.com/s/hau6e05z5hml3su/journal.pdf.

3596

