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ABSTRACT

We describe two formulations of the kernel canonical corre-
lation analysis (KCCA) problem for multiple data sets. The
kernel-based algorithms, which allow one to measure nonlin-
ear relationships between the data sets, are obtained as non-
linear extensions of the classical maximum variance (MAX-
VAR) and minimum variance (MINVAR) canonical correla-
tion analysis (CCA) formulations. We then show how adap-
tive versions of these algorithms can be obtained by reformu-
lating KCCA as a set of coupled kernel recursive least-squares
algorithms. We illustrate the performance of the proposed al-
gorithms on a nonlinear identification application and a cog-
nitive radio detection problem.

Index Terms— Kernel methods, canonical correlation
analysis, recursive least-squares, adaptive filtering

1. INTRODUCTION

Canonical Correlation Analysis (CCA) is a well-known tech-
nique in multivariate statistical analysis. The original CCA
formulation was introduced by Hotelling in 1936 [1] as a
way to measure the linear relationship between two multivari-
ate variables. Given two data sets, CCA retrieves the linear
projections of both that are maximally correlated. Since its
original formulation, many extensions have been proposed to
the standard CCA technique. Among others, there exist sev-
eral generalized versions of CCA that deal with multiple data
sets [2, 3], and also extensions to nonlinear versions of CCA
[3, 4, 5], in particular kernel canonical correlation analysis
(KCCA). An adaptive version of linear generalized CCA was
proposed in [6], which allows one to perform CCA online and
in time-varying environments. The range of fields in which
CCA has been applied is wide and varied, including economy,
meteorology, functional magnetic resonance imaging (fMRI)
[7, 8, 9], blind source separation [5, 10], multivariate regres-
sion [6] and communication theory [11, 12].

In this paper we propose an online framework for gener-
alized kernel canonical correlation analysis. This framework
builds upon the linear adaptive CCA formulation from [6],
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which uses a set of coupled recursive least-squares (RLS) al-
gorithms, one per data set, to retrieve the linear CCA solution
in an online manner. We will resort to kernel methods [5],
and in particular to kernel adaptive filtering [13, 14], to build
a nonlinear version of this framework.

In order to retrieve the KCCA solution, the adaptive
framework uses a set of coupled kernel recursive least-squares
(KRLS) algorithms. While there exist several different KRLS
implementations, the proposed KCCA framework requires an
algorithm with tracking capability, which has become pos-
sible through recent advances in the field of kernel adaptive
filtering [15]. A hybrid algorithm based on a coupling of
a RLS and a sliding-window KRLS algorithm, which has
only limited tracking capability, was previously employed
in [12] to nonlinear channel identification. In this paper we
formalize the kernel-based approach, we derive two practical
adaptive KCCA algorithms and we perform simulations using
the more sophisticated KRLS-T algorithm from [15].

The rest of this paper is structured as follows: In Section 2
we provide an overview of two basic generalized KCCA for-
mulations, followed by a derivation of their adaptive versions
in Section 3. The results of two numerical experiments are re-
ported in Section 4, and, finally, the main conclusions of this
work are listed in Section 5.

2. GENERALIZED KERNEL CANONICAL
CORRELATION ANALYSIS

We are given M data sets {xi(1),xi(2), . . . ,xi(N)}, i =
1, . . . ,M , each containing N multivariate data. Kernel meth-
ods require the data to be transformed into a high-dimensional
feature space, x → Φ(x), where the corresponding Gram ma-
trices (or “kernel” matrices) Ki can be calculated as

Ki(j, k) = Φi(xi(j))
�Φi(xi(k)) = κi(xi(j),xi(k)), (1)

in which κi(·, ·) represents a kernel function. The problem of
KCCA consists in finding the projections of the transformed
data sets, zi = Kiαi, that have maximal correlation [3, 5].
The generalized canonical correlation between the M trans-
formed data sets is defined as

ρ =
1

M

M∑
i=1

ρi, (2)
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in which

ρi =
1

M − 1

M∑
j=1
j �=i

ρij (3)

is a measure of the correlation associated to the i-th data set,
ρij = z�i zj = α�

i KiKjαj . The trivial solution is avoided
by applying the following constraint on the energy of the
canonical variates

1

M

M∑
i=1

‖zi‖2 =
1

M

M∑
i=1

α�
i KiKiαi = 1. (4)

Overfitting problems can be avoided by adding a regulariza-
tion factor c to the norm of the projectors in this restriction,

1

M

M∑
i=1

α�
i KiKiαi + cα�

i Kiαi = 1, (5)

see [3]. By defining the matrices

R =

⎡
⎢⎢⎣
K1K1 · · · K1KM

...
. . .

...

KMK1 · · · KMKM

⎤
⎥⎥⎦ , (6)

D =

⎡
⎢⎢⎣
K1(K1 + cI) · · · 0

...
. . .

...

0 · · · KM (KM + cI)

⎤
⎥⎥⎦ , (7)

the solutions of the KCCA problem can now be found by solv-
ing the following generalized eigenvalue problem (GEV)

1

M
Rα = βDα, (8)

where α = [α�
1 ,α

�
2 , . . . ,α

�
M ]� and β = 1+(M−1)ρ

M . The
canonical weights αi that provide the projections that admit
the best possible one-dimensional representation are retrieved
as the eigenvector corresponding to the largest eigenvalue of
the GEV problem (8). This general formulation, which in
the case of a linear kernel κ(xi,xj) = x�

i xj corresponds
to the maximum variance (MAXVAR) formulation from [2],
reduces to the standard KCCA algorithm from [3] in case only
two data sets are used. With a linear kernel and only two data
it reduces to the classical CCA formulation from [1].

Analogously to the MAXVAR generalization of CCA, the
minimum variance (MINVAR) generalization of CCA is de-
fined as the problem of finding the projections that admit the
best possible (M − 1)-dimensional representation [2]. In the
context of KCCA, the KCCA-MINVAR generalization is de-
fined as the problem of minimizing the generalized canonical
correlation ρ subject to restriction (5), and thus it amounts to
retrievingα corresponding to the minimum eigenvalue of (8).
This formulation is used for instance in [5] for kernel indepen-
dent component analysis, where the goal is to filter nonlinear

transformations that minimize the mutual information among
the recovered signals. In the next section we will derive adap-
tive algorithms for both the MAXVAR and MINVAR criteria.

3. ADAPTIVE KCCA

3.1. MAXVAR

The GEV problem (8) can be interpreted as a set of M cou-
pled kernel regression problems

β(Ki + cI)αi = z, i = 1, . . . ,M, (9)

where z = 1
M

∑M
i=1 zi and zi = Kiαi, and we have assumed

that Ki is invertible. For a given z, the weights αi can thus
be retrieved by performing kernel least-squares regression,

αi =
1

β
(Ki + cI)−1z. (10)

Let us assume now that we are operating in an online scenario,
in which one datum xi(n) of each data set is made available
per time step n. In this scenario a recursive solution can be
formulated for Eq. (10), which is known in the literature as
kernel recursive least-squares (KRLS). Nevertheless, KRLS
requires that the output z(n) is known during training. In-
terestingly, however, the KCCA framework implies that the
M KRLS algorithms are coupled and that they should pro-
duce the same outputs z(n). Eq. (9) indicates that this can be
achieved by estimating z(n) in each iteration as

z(n) =
1

M

M∑
i=1

zi(n), (11)

where zi(n) is the output of the i-th KRLS algorithm eval-
uated on xi(n). Given the estimate z(n) from Eq. (11), the
n-th iteration of the algorithm concludes by training each
KRLS individually on its corresponding input-output data
pair (xi(n), z(n)).

3.1.1. Kernel recursive least-squares

A few remarks need to be made on this procedure. First, due
to space restrictions, we will not discuss the inner mechanics
of KRLS in more detail, but rather refer to [15]. For the scope
of this paper it is sufficient to know that KRLS solves Eq. (10)
recursively. The only two operations used by the adaptive
KCCA framework are: 1) training the KRLS algorithm on
input-output data pairs, and 2) evaluating it on input data.

Furthermore, since the design of online kernel methods
presents certain difficulties, such as growing matrices and
complexities, several different implementations of KRLS
have been proposed in the last decade. One of the research
goals in this area has also been to design a KRLS algorithm
capable of tracking. This is a necessary property in the pro-
posed KCCA framework, since the initial estimates of z(n)
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1 Initialize the target output z(1) randomly.
2 Initialize the i-th KRLS with (xi(1), z(1)), ∀i.
3 for n = 2, 3, . . . do
4 Receive xi(t), the input to the i-th KRLS, ∀i.
5 Obtain the corresponding output zi(n), ∀i.
6 Calculate z(n) through (11).
7 Center and normalize z(n).
8 if MAXVAR then
9 Train the i-th KRLS with (xi(n), z(n)), ∀i.

10 else if MINVAR then
11 Calculate ri(n) through (15), ∀i.
12 Train the i-th KRLS with (xi(n), ri(n)), ∀i.
13 end
14 end
Algorithm 1: Adaptive KCCA using MAXVAR/MINVAR.

are likely to be erroneous and KRLS must have a mechanism
to “forget” these data over time. Among the existing KRLS
algorithms only a few are truly adaptive in this sense. In
the simulations of Section 4 we will use the recently pro-
posed KRLS-T algorithm from [15], which combines all the
necessary properties.

3.2. MINVAR

In order to retrieve the eigenvector corresponding to the min-
imum eigenvalue of the GEV problem (8), we first rewrite it
as follows (

D− 1

M
R

)
α = γDα, (12)

where γ = 1 − β. Analogously to the MAXVAR case, the
GEV problem (12) can be interpreted as a set of M coupled
kernel regression problems,

γ(Ki + cI)αi = ri, i = 1, . . . ,M, (13)

where ri = zi − z. The weights αi can therefore be retrieved
by solving the kernel least-squares regression problem

αi =
1

γ
(Ki + cI)−1ri, i = 1, . . . ,M, (14)

when ri is given. Hence, an adaptive KCCA-MINVAR algo-
rithm can be obtained by applying M coupled KRLS algo-
rithms, which use the following estimate of the output

ri(n) = z(n)− 1

M

M∑
i=1

zi(n), (15)

as indicated by Eq. (13).
The proposed KCCA-MAXVAR and KCCA-MINVAR

algorithms are summarized in Alg. 1.
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Fig. 1. Wiener system identification results of experiment 1.

4. NUMERICAL EXPERIMENTS

In this section we demonstrate the validity of the proposed
algorithms through two different experiments. The KRLS
algorithms used in these experiments are Matlab implemen-
tations from KMBOX1. The kernel we use is a radial basis
function (RBF) kernel of the form k(xi,xj) = exp(−||xi −
xj ||2/2w2), where w is the kernel width.

4.1. Wiener system identification

In the first experiment, we consider the online identifica-
tion of a Wiener system, which is a block-based nonlinear
system that consists of a static linear filter followed by a
nonlinear channel. The experimental setup is taken from
[12]. Specifically, the linear filter has impulse response
h = [1, 0.3668,−0.5764, 0.2070]� and the nonlinearity is
y = tanh(x).

In [12], a simplified version of the proposed algorithm
was presented for two data sets, specifically designed for
Wiener system identification. It couples a linear RLS al-
gorithm , which identifies the linear channel, with a KRLS
algorithm, which identifies the (inverse) nonlinearity. The
KRLS algorithm used in [12] is sliding-window KRLS (SW-
KRLS), which is capable of performing some tracking albeit
with limited results. We repeat this experiment and compare
the results to the proposed KCCA approach in which the
newer KRLS-T algorithm from [15] is used, which is a more
sophisticated tracker. Note that in the case of two data sets
the formulations of KCCA-MAXVAR and KCCA-MINVAR
coincide. For SW-KRLS and KRLS-T we use a memory
of 20 bases, and the forgetting factor of KRLS-T is set to
λ = 0.99. The remaining setup parameters can be found in
[12].

The identification results are displayed in Fig. 1. The dis-
played MSE is measured between the true system’s internal
signal z(n) and the estimate obtained by the RLS and KRLS
algorithms. The results were averaged out over 10 simula-
tions. As can be observed, using KRLS-T in adaptive KCCA
has a positive effect, as it is capable of avoiding the error
peaks produced by SW-KRLS.

1Available at http://sourceforge.net/p/kmbox/
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4.2. Detection in cognitive radio

In the second experiment, we deal with a detection problem
that uses a set of M sensors. Such detection problems appear
for instance in multiantenna spectrum sensing for cognitive
radio networks [16, 17, 18], where the secondary users per-
form spectral sensing in order to identify whether a wireless
communication channel is in use by a licensed primary user
or not. While in this scenario each sensor corresponds to a
subchannel within the sensed spectrum band, one can easily
imagine other applications such as sensor networks that fall
under the description of this experiment.

Here, each sensor measures realizations of a zero-mean
Gaussian distribution with variances σ. We consider the fol-
lowing hypotheses:

H0 : x ∼ N (0, diag(σ0)), σ0 = [σ0,1, . . . , σ0,M ],

H1 : x ∼ N (0, diag(σ1)), σ1 = [σ1,1, . . . , σ1,M ].

(16)

Under hypothesis H0, the pdf measured by the i-th sensor
is N (0, σ2

0,i), for i = 1, . . . ,M . Under hypothesis H1, it
is N (0, σ2

1,i). Note that the measurements of the different
sensors are conditionally independent given the hypothesis.
For reasons of simplicity, we assume that σ0,i < σ1,i. If the
variances σ0 and σ1 are known, one can apply the classical
Neyman-Pearson test on each sensor individually, which in
this case decides H1 if the test statistic

xi[n](σ1,i − σ0,i)xi[n] (17)

is greater than a threshold τi, where xi[n] is the sample re-
ceived by sensor i at time n (see [19, Chapter 3] for further
details). By exploiting the knowledge that all measurements
at a given time follow the same hypothesis, the individual tests
can be combined into the following optimal test

M∑
i=1

xi[n](σ1,i − σ0,i)xi[n] > τ. (18)

We consider the more challenging case in which the vari-
ances σ0 and σ1 are unknown. In this case, we can only
exploit the knowledge that the test statistics should be cor-
related for all sensors. Since this implies that the individual
hypothesis tests should be correlated, CCA can be applied.
As discussed above, however, the optimal test statistics (17)
are nonlinear (quadratic) functions of the data, and therefore
the solution requires to use a nonlinear kernel.

The experimental setup is as follows: M = 3 sensors are
considered, and N = 300 samples are used to blindly learn
the hypothesis tests. The true variances of each distribution
under the different hypotheses are σ0 = [0.5, 0.5, 0.5] and
σ1 = [0.5, 2, 2]. In particular, the variances for one of the
sensors coincide under both hypotheses, while the variances
for the other sensors are significantly different.
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Fig. 2. Detection ROCs for experiment 2.

We compare the results of KCCA-MAXVAR and KCCA-
MINVAR, both first in batch mode and then in online mode.
The parameters of the batch and online algorithms are chosen
as follows: the kernel width is fixed as w = 0.5, and the
regularization is set to c = 10−5. For adaptive KCCA the
KRLS-T algorithm from [15] is used, with forgetting factor
λ = 0.999 and a limited memory of 20 bases.

The receiving operator characteristic (ROC) curves of
all algorithms, calculated on a test set of 10.000 points, are
shown in Fig. 2. Several observations can be made. First
of all, the ROCs of both batch KCCA algorithms fall very
close to the optimal (Neyman-Pearson) detector, which has
complete knowledge of the statistics while the KCCA algo-
rithms operate completely blindly in this sense. Furthermore,
the KCCA-MINVAR algorithms have a noticeable advantage
over KCCA-MAXVAR. The reason is that they use the result
of the M − 1 most informative tests in order to explain the re-
maining test. KCCA-MAXVAR, on the other hand, uses the
result of a single test in order to explain the M − 1 remain-
ing ones, which is clearly a disadvantage in this particular
scenario. Finally, note that the adaptive algorithms perform
slightly worse compared to their batch equivalents, since they
are trained on the same data set but in an online manner.
Nevertheless, their execution times are lower compared to the
batch algorithms, since they are based on lower-complexity
KRLS implementations.

5. CONCLUSIONS

We have proposed KCCA-MAXVAR and KCCA-MINVAR
formulations that allow to perform nonlinear CCA with mul-
tiple data sets, both in batch and online (adaptive) form. The
online algorithm is made possible thanks to recent advances
in kernel adaptive filtering.

The first experimental results of these algorithms are very
promising. In particular, we have described a new application
of KCCA in the context of cognitive radio, in which it can be
used to construct a hypothesis test for detection without using
any knowledge of the signal statistics.
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