
METRIC BASED GAUSSIAN KERNEL LEARNING FOR CLASSIFICATION

Zhenyu Guo and Z. Jane Wang, Senior Member, IEEE

University of British Columbia
Department of Electrical and Computer Engineering

Vancouver, B.C. Canada
{zhenyug, zjanew}@ece.ubc.ca

ABSTRACT

Metric learning for KNN has attracted increasing attentions
in the field of machine learning (e.g., based on the paramet-
ric form of Mahalanobis distance). A good distance metric
is also the foundation for other machine learning models, for
example, a Gaussian RBF kernel is constructed upon distance
metric defined in the feature vector space. However, besides
the KNN classifier, there is little research work on learning a
good distance metric for distance-based models. In this paper,
we propose a novel algorithm to learn a Mahalanobis-distance
type metric for Gaussian RBF kernels. We conduct experi-
ments on 5 data sets from the UCI Machine Learning Repos-
itory database and two face recognition data sets. The classi-
fication results show that the proposed algorithm can outper-
form other state-of-arts on most of the data sets and achieve
comparable results on the rest of data sets.

Index Terms— Metric Learning, Gaussian Kernel, Mul-
tiple Kernel Learning, Riemannian Manifold

1. INTRODUCTION

Distance metric defined on the data samples plays an im-
portant role in classification, clustering, ranking and other
machine learning topics. For example, a k-nearest neighbor
(KNN) classifier decides the class label of a testing data point
directly based on the distances between this testing point to
other training points. Therefore, learning a good distance
metric for KNN classifiers, referred as metric learning, has
become an active research direction recently [1–3]. Metric
learning algorithms aim at learning a distance metric such
that data points from the same class are closer under this met-
ric and data points from different classes are farther. Such
metric learning methods usually involve Semi-Definite Pro-
gramming (SDP) to optimize over the cone of Positive Defi-
nite (PD) matrices. It is worth noting that distance metric is
also important for other models in machine learning, besides
KNN classifiers. For example, a Gaussian radial basis func-
tion (RBF) kernel is constructed based on a distance metric
defined in the feature space.

Gaussian RBF kernels have been successfully applied
with kernel machines like SVM and Multiple Kernel Learning
in computer vision, signal processing and natural language
processing. Traditionally, a Gaussian Kernel is defined by a
single normalization parameter (a scaler) based on Euclidean
distance. And most previous kernel learning methods [4–6]
try to optimize over that single parameter to minimize the
structural risk for classification. Among these methods, one
category tries to learn the PD metric matrix directly from
the training data [4], and the other category tries to learn a
convex combination of basis kernel functions [5, 6], referred
as Multiple Kernel Learning (MKL), to achieve the goal. It
is obvious that the fixed Euclidean distance metric limits the
degree of freedom for the learning methods in terms of pur-
suing a good RBF kernel function. In this paper, we propose
learning a distance metric for Gaussian RBF kernels used
in kernel machines for classification tasks, and we refer it
as Metric based Kernel Learning (MetricKL). It is related
to metric learning since the objective of our MetricKL is to
find a good distance metric matrix; It is also related to kernel
learning since the final output of MetricKL is an optimal
Gaussian RBF kernel which can be used for kernel machines,
like SVM, to perform classification. However the proposed
MetricKL is substantially different from both conventional
metric learning and kernel learning, and it can be seen as a
combination of them. Inspired by multiple kernel learning,
our MetricML is to learn the optimal metric matrix by find-
ing a convex combination of base metric matrices, instead of
learning the metric matrix directly as in conventional metric
learning [1–3]. We summarize the contributions of this paper
as follows:

• We propose a parametric form of a Gaussian kernel
based on Mahalanobis-distance type metric.

• We propose a sampling scheme to generate base metric
matrices along Riemannian geodesic.

• We adopt a multiple kernel learning optimization
method to learn the optimal metric matrix for the pro-
posed Gaussian kernel.
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The paper is organized as follows. Section 2 will de-
scribe the Gaussian RBF kernel and its parametric form based
on Mahalanobis-distance type metric. Section 3 will present
an approach for generating base metric matrices for the pro-
posed MetricML, and Section 4 will describe the MetricKL
algorithm. The classification results on real data sets will be
shown in Section 5.

2. METRIC PARAMETRIC FORMULATION FOR
GAUSSIAN RBF KERNEL

In this section, we will provide a parametric formulation of
the Gaussian RBF kernel based on Mahalanobis-distance type
metric, which is a convex combination of base metric matri-
ces. A Gaussian RBF kernel function is traditionally defined
on Euclidean distance as:

k(xi, xj) = exp (−γ||xi − xj ||
2

2
), (1)

where xi and xj are two vectors from the feature space and γ

means the scaler normalization parameter. This RBF function
arises from the statistical assumption that data points follow
an underlying i.i.d. Gaussian distribution in the original fea-
ture space. Now let’s rewrite the above kernel function with a
Mahalanobis metric as

k(xi, xj) = exp (−γ(xi − xj)
T I(xi − xj)),

which is clearly equivalent to Eq.(1), where the metric is the
identity matrix I .

In practice, often the data points don’t follow an i.i.d.
Gaussian distribution in the original feature space, but may
follow a Gaussian distribution in another space where the data
is projected by a linear projection operation L from the orig-
inal feature space. With applying the linear projection L, we
can obtain a kernel function as

k(xi, xj) = exp (−γ(Lxi − Lxj)
T (Lxi − Lxj))

= exp (−γ(xi − xj)
TLTL(xi − xj))

= exp (−γ(xi − xj)
TM(xi − xj)),

where M , with M = LTL, can be considered as a metric
matrix. To learn a good kernel function, both the normaliza-
tion parameter γ and the metric M are important. Traditional
Gaussian kernel learning methods are limited to learning only
γ, which makes them unable to find the correct similarity be-
tween data points in practical applications. Now we propose a
convex parametric form onM to learn a better kernel function
k.

Inspired by the success of MKL, we propose using a con-
vex combination of N base metric matrices Ms’s to represent

the metric M and the kernel is now defined as:

k(xi, xj) = exp (−γ(xi − xj)
T

N∑

s=1

dsMs(xi − xj)) (2)

= exp (−γ

N∑

s=1

ds(xi − xj)
TMs(xi − xj)) (3)

=

N∏

s=1

exp (−γds(xi − xj)
TMs(xi − xj)), (4)

where Ms is the sth metric matrix from the set of N base
matrices, and d = (d1, d2, ..., ds, ...., dN ) means the weight
coefficient vector, which is constrained by d � 0. Each
Ms is a PD matrix, and thus the convex combination M =∑N

s=1
(dsMs) is also a PD matrix and represents a valid met-

ric matrix. By simply replacing γds jointly by a new ds in the
equation above, we can simplify the parametric kernel func-
tion to be only on the parameter vector d. With the following
definition

ks(xi, xj) = exp (−(xi − xj)
TMs(xi − xj)), (5)

Eq.(2) can be rewritten as

kd(xi, xj) =

N∏

s=1

ks(xi, xj)
ds , (6)

which can be viewed as a weighted product of base kernels
for a fixed set of {Ms}. The problem of learning an optimal
metric M is now reduced to the problem of learning an op-
timal weight coefficient vector d for this product kernel. In
Section 4, we will describe how to find the optimal d based
on Generalized Multiple Kernel Learning (GMKL) [6].

3. BASE METRIC MATRICES GENERATION BASED
ON COVARIANCE MATRIX

In the previous section, we successfully formulate the metric
learning problem for a Gaussian RBF kernel into a product
kernel learning problem. The next question to ask is how to
generate the base metric matrices to form the convex com-
bination. Although the multiple kernel learning methods be-
came more and more mature, most of the existing algorithms
neither can reach the true global optimum or reach the opti-
mum for the exact objective function. Therefore, good base
metric matrices for the combination is very important for our
learning task.

Recall that the Mahalanobis distance was originally pro-
posed to make use of the precision matrix S (the inverse of
the covariance matrix) of the training data, it is natural to
consider the precision matrix as a good base metric, which
indeed shows good performances and has a strong relation-
ship with the underlying statistical characteristics of the data
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set. Research on the estimation of covariance matrix and pre-
cision matrix [7,8] suggests that the combination of a sample
precision matrix and a target matrix often works well for the
estimation purpose. The identity matrix I (or its weighted
version) is often chosen as the target matrix [7, 8]. Inspired
by this observation, we include the identity matrix as one base
metric in our learning problem.

In the conventional multiple kernel learning, base kernels
are usually generated by selecting parameters that span the
parameter space on a grid. Since the metric matrix is a PD
matrix which lies on a Riemannian manifold, it is too expen-
sive to select the matrices that span the Riemannian manifold
for our learning purpose. However, the geodesic connecting
the identity matrix I and the precision matrix S actually con-
tains matrices which are geometrically “between” these two
matrices. Since both I and S are two candidate base metric
matrices, it is reasonable to believe that the matrices along
their geodesic have the similar good properties for being a
candidate metric. Therefore we propose sampling matrices
along the geodesic between I and the precision matrix S to
form the basis set {Ms}. The geodesic γ(t) between two PD
matrices is given as [9],

γ(t) = P1

1

2 (P1
−

1

2P2P1
−

1

2 )tP1

1

2 , (7)

where P1 and P2 are two PD matrices on the Riemannian
manifold, and t is “velocity” and t ∈ [0, 1]. Here t being from
0 to can be seen as moving from P1 to P2 along the geodesic
line. By uniformly sampling t ∈ [0, 1], we can uniformly
sample matrices along the geodesic. The calculation of γ(t)
can be done efficiently by Eigen decomposition.

4. METRIC BASED KERNEL LEARNING

In Section 2 and Section 3, we have formulated our pro-
posed Metric based Kernel Learning (MetricKL) problem
into a product kernel learning task, and we have proposed
an approach to generate good base metric matrices base on
the Riemannian geometry and precision matrix. In this sec-
tion, we will describe an optimization algorithm to learn the
optimal coefficient vector d for the metric combination.

To use the parametric Gaussian RBF kernel for classifi-
cation, we consider the popular SVM with multiple kernels,
which can be described as an optimization problem [6],

max
α

1
Tα−

1

2
αT

YKdYα + r(d), (8)

s.t.1T
Yα = 0, 0 ≤ α ≤ C, (9)

d � 0, (10)

where Kd is the kernel matrix computed by kd in Eq.(6).
Please refer to [6] for details about the above optimization
problem. [6] provided an efficient gradient descent based al-
gorithm to solve Eq.(8), which is referred as GMKL and is
adopted here by us to solve our MetricKL problem. To better

Algorithm 1- MetricKL
1: Compute the sample covariance matrix Σ from the training data
2: Compute the sample precision matrix S by inversing Σ
3: Sample N PD matrices Ms by Eq.(7)
4: Construct N base kernel matrices by Eq.(5)
5: Find the optimal d∗ by solving Eq.(8) by GMKL
6: The optimal metric M∗ is obtained as

∑N

s=1
d∗sMs

Table 1. The MetricKL algorithm for learning the optimal
metric for Gaussian RBF kernels.

summary the proposed MetricKL algorithm, we describe the
steps in Table 1.

For the implementation of MetricKL, as described in Ta-
ble 1, the inverse operation in step 2 can be done by Eigen
decomposition and clipping the spectrum to make sure the
resulting inverse matrix is still PD. Step 1 can be usually
performed by calculating the conventional sample covariance
matrix as Σ = 1

n−1

∑n

i=1
(xi − x̄)(xi − x̄)T , where n is the

sample size, xi is the ith data point and x̄ is the sample mean.
However, when the sample size n is much smaller than the
data dimension p, such sample covariance matrix cannot yield
a satisfactory estimation of the true covariance matrix, which
is called the high-dimensional n << p problem. This prob-
lem is an active research area itself, methods like [8, 10] can
solve this problem by assuming the sparsity assumption. Here
due to space limit, we don’t include the details on estimating
covariance and precision matrices. Please refer to the related
references.

5. EXPERIMENT

In this section, we will evaluate the proposed MetricKL algo-
rithm for classification tasks on 5 UCI machine learning data
sets, the ORLFace data set and the YaleFace data set. For
comparison, we also include the classification results from
several state-of-art methods in metric learning and kernel
learning: LMNN [1], GMKL [6]. The KNN classifier and the
standard SVM are also considered as baseline methods.

5.1. UCI Machine Learning Repository

We first test on 5 data sets from UCI Machine Learning
Repository: Ionosphere, Sonar, Iris, Wdbc, Wine. We use
the data files provided by LIBSVM [11] which are scaled
to [−1, 1]. For LMNN, the parameters are set according
to [1]. For SVM, GMKL and MetricKL, the weight for slack
variables C is set to 100. In GMKL, the 11 standard Gaus-
sian RBF base kernels are combined by taking their product.
And in MetricKL, we sample 11 metric matrices by taking
t ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}, and then
the 11 base kernels are computed by Eq.(5). For all data sets,
we run 10-fold cross-validation to evaluate the classification
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data set KNN MetricKL GMKL [6] LMNN [1] SVM

ionosphere 36.11 ± 3.60 5.56 ± 3.46 6.67 ± 3.26 13.89 ± 6.42 7.5 ± 3.48
wine 5.26 ±3.51 1.58 ± 2.54 1.58 ± 2.54 5.26 ± 3.51 4.21 ±5.44
iris 4.00 ± 4.66 4.67 ± 4.50 6.00 ± 4.92 4.00 ± 4.66 5.33 ± 4.22
wdbc 8.45 ± 1.90 7.93 ± 4.39 11.21 ± 3.28 8.45 ± 1.90 10.17 ± 2.63
sonar 53.13 ± 2.30 14.09± 5.85 12.27 ± 6.79 15.00 ± 7.44 12.27 ± 6.45
ORLFace 12.50 ± 3.24 2.25± 0.79 3.08 ± 1.11 9.33± 2.18 3.17 ± 1.17
YaleFace 44.5 ± 6.67 24.67 ± 6.93 26.83± 5.58 39.83 ± 5.90 29.17 ± 4.86

Table 2. The classification results for different methods on all seven data sets. The average classification errors and standard
deviations are shown in percentage(%). We highlight the results of the proposed MetricKL when it performs the best on the
specific data set.

Fig. 1. Sample images from ORLFace data set for one sub-
ject.

performances of different methods. The classification error
results are reported in Table 2 in percentage.

In Table 2, we can see that the proposed MetricKL outper-
forms other methods on 3 data sets out of 5, and it achieves
comparable results on the left 2 data sets. The proposed Met-
ricKL outperforms GMKL and SVM in most of the cases,
which demonstrates that the proposed metric parametric for-
mulation indeed provides more degree-of-freedom for kernel
learning and it can learn a better kernel function than state-of-
art kernel learning algorithms which mainly focus on learning
a few kernel parameters. Also, it is worth noting that the pro-
posed MetricKL outperforms KNN and the metric learning
method LMNN consistently. This demonstrates the advan-
tages of learning a distance metric in the kernel space.

5.2. Face Recognition

We also test the proposed MetricKL algorithm for face recog-
nition tasks on two data sets. ORLFace data set, shown in Fig.
1, contains 400 gray scale images of 40 subjects in 10 differ-
ent poses. we down-sampled the images to 32×32 pixels and
then used PCA to further reduce the dimensionality to 50. In
the experiment, training set is constructed by randomly sam-
pling 7 images per subject and the rest 3 images are used for
testing. Therefore the face recognition problem is a 40-way
classification task. The parameters of different models are the
same as in the previous section. We run 50 random trials for
all methods and report the average classification errors in Ta-
ble 2.

YaleFace data set, shown in Fig. 2, contains 165 gray
scale images of 15 individuals. There are 11 images per
subject, one per different facial expression or configuration:
center-light, w/glass, happy, left-light, w/no glass, normal,

Fig. 2. Sample images from YaleFace data set for one subject.

right-light, sad, sleepy, surprised, and wink. For the train-
ing/testing splitting, we follow the scheme used for ORLFace
by randomly sampling 7 images for training and the rest 4
images for testing. We run 50 random trials on YaleFace to
report the average performance for all methods in Table 2.

From Table 2, we can see that the proposed MetricKL
achieves the best performance on both face recognition data
sets. Comparing to SVM and GMKL, the significant im-
provement of MetricKL further illustrates that the proposed
algorithm is able to learn a good distance metric for Gaussian
RBF kernels efficiently.

6. CONCLUSION

In this paper, we present a MetricKL algorithm to learn a
Mahalanobis-distance type metric for Gaussian RBF kernels
based on the convex combination of base metric matrices. To
generate good base metric matrices, we propose a sampling
scheme along the Riemannian geodesic between the identity
matrix and the precision matrix. The classification results on
5 UCI machine learning data sets and on 2 face recognition
data sets show that the proposed MetricKL algorithm gener-
ally improves the Gaussian RBF kernel comparing to other
kennel learning methods. The results also show that Met-
ricKL could achieve better performances on most of the data
sets when compared with several state-of-art metric learning
methods. The promising results support the concept of learn-
ing a metric for general distance based models. Since Gaus-
sian functions are also widely used in Conditional Random
Field, Semi-supervised Learning and other machine learning
areas, it is possible to learn a good distance metric for those
applications too in the future.

3585



7. REFERENCES

[1] Kilian Q. Weinberger and Lawrence K. Saul, “Dis-
tance metric learning for large margin nearest neighbor
classification,” Journal of Machine Learning Research
(JMLR), 2009.

[2] Jun Wang, Huyen Do, Adam Woznica, and Alexan-
dros Kalousis, “Metric learning with multiple kernels,”
in Advances in Neural Information Processing Systems
(NIPS), 211.

[3] Jason V. Davis, Brian Kulis, Prateek Jain, Suvrit Sra,
and Inderjit S. Dhillon, “Information-theoretic met-
ric learning,” in International Conference on Machine
Learning (ICML), 2007.

[4] Gert R.G. Lanckriet, Nello Cristianini, Peter Bartlett,
Laurent El Ghaoui, and Michael I. Jordan, “Learning the
kernel matrix with semidefinite programming,” Journal
of Machine Learning Research (JMLR), 2004.

[5] Alain Rakotomamonjy, Francis R. Bach, Stéphane
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