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ABSTRACT

This paper presents a kernelized version of recurrent systems
(KRS) and develops a kernel real-time recurrent learning
(KRTRL) algorithm to train KRS. To avoid instabilities dur-
ing training, the teacher forcing technique is adopted to mod-
ify the KRTRL learning. The proposed algorithm is compared
with the KLMS in Lorenz time series prediction. The predic-
tion performances of the proposed algorithm outperform the
KLMS significantly.

Index Terms— recurrent networks, real-time recurrent
learning (RTRL), reproducing kernel Hilbert space (RKHS),
kernel adaptive filter, hidden state model

1. INTRODUCTION

In this paper, we propose a novel kernel adaptive filter algo-
rithm for time series prediction with recurrent hidden state
model, which is learned from the processing data and is able
to describe the dynamics of the data.

Since the success of the support vector machine (SVM)
[1], the kernel methodology has been applied to many algo-
rithms of machine learning and adaptive filters. Utilizing the
famed kernel trick, these linear methods have been recast in
high dimensional reproducing kernel Hilbert spaces (RKHS)
[2, 3, 4, 5] to yield more powerful nonlinear extensions, in-
cluding kernel principal component analysis (KPCA) [6, 7]
and kernel independent component analysis (KICA) [8, 9].
Recently, some on-line kernel adaptive filter algorithms are
also developed to solve many nonlinear regression problems,
such as kernel recursive least squares (KRLS) [10], kernel
least mean squares (KLMS) [11] and kernel recurrent gamma
network (KRGN) [12] algorithms, etc.

The KRLS and KLMS algorithms are able to discover
the underlying input-output mapping very well for station-
ary cases. However, because of absence of hidden states,
these algorithms cannot describe the underlying dynamics of
the processing data for non-stationary cases. Therefore, they
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are not able to achieve good performance in such cases. In
the KRGN algorithm, although the recursive Gamma filter is
implemented into the RKHS, the specific topology only al-
lows local recursion on the past of the input, which is easy
to control stability but dose not allow a full recurrent state.
To solve global recursiveness, the extended kernel recursive
least squared (Ex-KRLS) algorithm [13] was proposed.But, it
can only implement a random walk model in the hidden state.
Then, another extended kernel recursive least squares algo-
rithm (Ex-KRLS-KF) was proposed based on the Kalman fil-
ter (KF) [14], which can be applied to any known linear or
nonlinear hidden state model cases. For both of these algo-
rithms (Ex-KRLS and Ex-KRLS-KF), however, the hidden
state model has to be known in advance, which may not be
available in many signal processing problems.

To construct and learn the underlying hidden state model,
the idea of recurrent neural networks (RNNs) [15] is adopted.
In kernel recurrent systems, the KLMS algorithm is applied
instead of the original perceptron algorithm, while making
the topology recurrent, as in Jordan and Elman’s networks
[16, 17]. Furthermore, a kernel version of real-time recurrent
learning (RTRL) algorithm [18] is derived to learn this recur-
rent network. To obtain a stable system, the teacher forcing
technique is applied to the KRTRL which substitutes the dy-
namics of the hidden state using the desired response to avoid
system instability.

The rest of the paper is organized as follows. In Section
2, the kernel recurrent system (KRS) are described. Next,
the kernel RTRL (KRTRL) algorithm is derived in Section
3. Then, the experiment of Lorenz time series prediction is
presented to evaluate the proposed algorithm in Section 4. Fi-
nally, discussions and conclusion are given in Section 5.

2. KERNEL RECURRENT NETWORKS

In this section, we present one general kernel recurrent net-
work architectures, namely the state-space model and point
out that any state-space model can be subsumed by a specific
state-space model with a kernel state model and a linear mea-
sure model. Then, in the next section, we will develop a ker-

3572978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013



nel RTRL algorithm to train this specific state-space model.
Fig. 1 shows the block diagram of a state-space model.
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nx and yi ∈ R
ny are inputs, hidden states

Hidden state 
model

Measurement 
model

Bank of unit-
time delays

iu
ix

1i+x
iy

Fig. 1. State-space model, the feedback part is shown in red.

and output at time i, respectively. The state-space model is

xi+1 = f(xi,ui) (1)

yi = h(xi+1), (2)

where fi(xi,ui) =
[

f (1)(xi,ui), . . . , f
(nx)(xi,ui)

]T

and hi(xi) =
[

h(1)(xi+1), . . . , h
(ny)(xi+1)

]T
. In this paper

the superscript (k) denotes the kth component of a vector or
the kth vector of a matrix.

In order to simplify the computation and reduce learning
time, we modify this state-space model as

[

xi+1

yi

]

=

[

f(xi,ui)
h ◦ f(xi,ui)

]

(3)

yi =
[

0 Iny

]

[

xi+1

yi

]

(4)

We denote

[

xi+1

yi

]

by si+1 as a new hidden state, and
[

0 Iny

]

by Wm as a known measurement matrix, where
Iny

is an ny × ny identity matrix, and ◦ is the composition
operator. Furthermore, let g(si,ui) = f(xi,ui).

We map si and ui into the RKHS Hs and Hu as ϕ(si) ∈
Hs and φ(ui) ∈ Hu, respectively. Then the new non-linear

state transition weights WH =

[

g(·, ·)
h ◦ g(·, ·)

]

are in the

same RKHS Hsu = Hs⊗Hu, where ⊗ is the tensor operator.
We denote ϕ(si)⊗ φ(ui) ∈ Hsu by ψ(si,ui).

At this point, we can express general state-space recurrent
networks using a special kernel state-space model as

si+1 = WT
Hψ(si,ui) (5)

yi = Wmsi+1 (6)

where WH are weights in RKHS and Wm is a known linear
matrix.

3. ON-LINE RECURRENT SYSTEM LEARNING

In the previous section, nonlinear recurrent systems are refor-
mulated in (5) and (6). To perform on-line learning in this
network, we develop the kernel real-time recurrent learning
(KRTRL) algorithm in this section and teacher forcing tech-
nique is also introduced to avoid instability during training.

3.1. Kernel real-time recurrent learning algorithm

The kernel real-time recurrent learning (KRTRL) is devel-
oped based on the RTRL algorithm [18], which derives its
name from the fact that adjustments are made to the weights
of a fully connected recurrent network in real time. The
KRTRL algorithm can also update the weights in RKHS,
which are functions actually, while the network continues to
perform its signal-processing function. The KRTRL is de-
rived with respect to (5) and (6). Without loss of generality,
all kernels involved in the algorithm are Gaussian kernels
defined as

k(x,y) = exp(−σ‖x− y‖2), (7)

where σ is the kernel parameter. For the RKHS Hu and Hs,
the kernels are kσu

(x,y) and kσs
(x,y) with kernel parame-

ters σu and σs, respectively.
To complete the description of this learning process, we

need to calculate the gradient of the error surface with respect
to ωk ∈ Hsu, which is the kth component of WH. To do
this, we first use (6) to define the ny × 1 error vector:

ei = di − yi, (8)

and the instantaneous sum of squared errors at time-step i is
defined in term of ei by

Ei =
1

2
eTi e

i. (9)

To implement this on-line learning algorithm, we use the
method of steepest descent, which requires knowledge of the
gradient matrix ∂Ei

∂ωk
, written as

∂Ei
∂ωk

=
∂eTi ei
2∂ωk

= −eTi
∂yi

∂ωk

= −eTi
∂yi

∂si+1

∂si+1

∂ωk

. (10)

According to (5) and (6), we have

∂yi

∂si+1
= Wm, (11)

and

∂si+1

∂ωk

=
∂WT

H
ψ(si,ui)

∂ωk

= WT
H

∂ψ(si,ui)

∂ωk

+ I(k)ns
ψ(si,ui)

T (12)

where Ins
is the ns × ns identity matrix and I

(k)
ns

is the kth
column of the identity matrix.

According to representation theory, we can express ωk,i

the weight at time i as a linear combination of {ψ(sj ,uj)}
i−1
j=0

such as
ω(k),i = Ψick,i (13)

where Ψi = [ψ(s0,u0), . . . , ψ(si−1,ui−1)] and ck,i ∈ R
i,

and WH can be expressed as

WH = ΨiCi (14)
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where Ci = [c1,i, . . . , cns,i] ∈ R
i×ns .

Then the first term of the last line in (12) is calculated by

WT
H

∂ψ(si,ui)

∂ωk

= CT
i

∂ΨT
i ψ(si,ui)

∂si

∂si
∂ωk

= 2σxC
T
i DiS

T
i

∂si
∂ωk

= Γi

∂si
∂ωk

(15)

where Di = diag(ΨTψ(si,ui)),
Si = [(s0 − si), . . . , (si−1 − si)], and Γi = ∂si+1

∂si
=

2σsC
T
i DiS

T
i . Substituting (15) into (12), we have the fol-

lowing recursive equation:

∂si+1

∂ωk

= Γi

∂si
∂ωk

+ I(k)ns
ψ(si,ui)

T . (16)

If we assume that ∂s1
∂ωk

= 0, then we can express ∂si
∂ωk

as

∂si
∂ωk

= Mk,iΨ
T
i , (17)

where Mk,i is a ns×imatrix and Mk,1 = [0, 0, . . . , . . . , 0]
T .

Furthermore, (16) can be rewritten as

∂si+1

∂ωk

= ΓiMiΨ
T
i + I(k)ns

ψ(si,ui)
T

=
[

ΓiMi, I
(k)
ns

]

ΨT
i+1

= Mk,i+1Ψ
T
i+1 (18)

where
Mk,i+1 =

[

ΓiMk,i, I
(k)
ns

]

. (19)

Substituting (11) and (17) into (10), we have

∂Ei
∂ωk

= −eTi WmMk,i+1Ψ
T
i+1. (20)

and can update ωk by

ωk,(i+1) = ωk,i + ηΨi+1 (WmMk,i+1)
T
ei (21)

where η is the learning rate parameter.
Therefore, the feature matrix Ψi and coefficient matrix

Ci ∈ R
i×ns should be updated by

Ψi+1 = [Ψi, ψ(xi,ui)] (22)

C
(k)
i+1 = ck,i+1 =

[

cTk,i, 0
]T

+ η1M
T
k,i+1W

T
mei (23)

(k = 1, 2, . . . , nx)

If we substitute (19) into (23), we have

MT
k,i+1W

T
mei =

[

ΓiMk,i, I
(k)
ns

]T

WT
mei

=
[

(

MT
k,iΓ

T
i W

T
mei

)T
,
(

WT
mei

)(k)
]T

(24)

Algorithm: Kernel Real-Time Recurrent Learning
Initialization: For i = 0,
Input Dim.: nu, State Dim.: ns and Output Dim.: ny

randomly set u0, s0 and s1,
Gaussian kernel size: σs and σu
feature matrices: Ψi+1 = [ψ(si,ui)]
Coeff. matrix: randomly set Ci+1 ∈ R

1×ns

Meas. matrix: Wm ∈ R
1×ny

Gradient matrix: Mk,i+1 = 0ns×1 for k = 1, . . . , ns

Learning rate parameters: η
Learning: For i = 1, . . .
Forward pass:
si+1 = CT

i Ψ
T
i ψ(si,ui), yi = Wmsi+1

ei = di − yi

Backward pass:
Si = [(s0 − si), . . . , (si−1 − si)]
Di = diag(ΨT

i ϕ(si,ui))
Γi = 2σsC

T
i DiS

T
i

Mk,i+1 =
[

ΓiMk,i, I
(k)
ns

]

for k = 1, . . . , ns

Update weights in RKHS WH:
Ψi+1 = [Ψi, ψ(si,ui)]

C
(k)
i+1 = C

(k)
i + ηMT

k,iΓ
T
i W

T
mei for k = 1, . . . , nx

Ci+1 =
[

CT
i+1, η

(

WT
mei

)T
]T

At this point, the learning procedure is complete and is sum-
marized in the inset KRTRL algorithm.

The computational complexity of KRTRL algorithm is
O(nsnyi+n

2
s
i), considering thatDi is a diagonal matrix. The

computational complexity increases linearly with the sample
number i, like the KLMS algorithm.

3.2. Teacher forcing

The KRTRL algorithm is a gradient based approach applied
to a recurrent system as can be seen in Fig. 1. However, un-
like the RTRL algorithm in which the activation functions are
fixed in advance and only the weights are updated to adjust
the network, the KRTRL constructs the expected KRS by ad-
justing the functions themselves. Therefore, the stability of
the learning system is a big issue for this learning algorithm,
and unfortunately, the stability analysis of recurrent functions
is so complicated that there is no general method to easily
specify stability conditions. Specifically, the updated func-
tions and calculated gradients both depend on the inputs ui

and hidden states si, which are functions in this case. Al-
though, in the KRTRL algorithm the gradient of hidden states
with respect to the functions ∂si+1

∂ωk
is propagated forward by

(16) to (19), the propagated gradient cannot always reflect the
real contribution of ωk to the current cost function, because
if the dynamics are unstable the weight update will be wrong.
The update made based on the gradient does not guarantee
that the function is modified in a proper way, whatever initial
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condition or how small learning rate.
Fortunately, we can apply the teacher forcing technique

to avoid this problem and train the KRS in a stable manner.
The idea of the teacher forcing technique is to replace, in the
training procedure, the actual hidden state s

(j)
i+1 by the cor-

responding desired response d
(j)
i in subsequent computation

of the behavior of the network. This can be done at every it-
eration or periodically to avoid states to diverge. The teacher
forcing technique uses the desired response, which is assumed
bounded and stable, to constrain and guide the learning dy-
namics of the hidden states by following the sequential de-
sired responses and to force the KRS to converge in a proper
way, avoiding system instability.

In detail, to derive a learning algorithm for this situation,
we once again differentiate the cost function with respect to
ωk. We find only the term Mk,i need to be modified. In

(17), ∂si
∂ωk

= Mk,iΨ
T
i . If s

(j)
i+1 is replaced by d

(j)
i , then

∂s
(j)
i+1

∂ωk
should be equal to zero. That is to say the jth row

of the matrix Mk,i is set as zeros. If all the hidden states

s
(j)
i+1 (j = 1, . . . , ns) are all substituted by di, the system

training procedure degrades to a MIMO KLMS algorithm. In
addition, the teacher forcing is applied once every t steps.

4. EXPERIMENTS AND RESULTS

To evaluate the proposed KRTRL algorithm, we chose to pre-
dict the Lorenz time series and the performance is compared
with the KLMS algorithm. The system is nonlinear, three-
dimensional and deterministic, defined by the set of differen-
tial equations given in [13]. Here, the experimental data are
generated by the coefficients β = 8/3, σ = 10 and ρ = 28.

The first order difference approximation is used with a
step size 0.01 to obtain the signal xi = [xi(1)xi(2)xi(3)]

T .
We pick the first component x(1) as the input signal to imple-
ment a short prediction of the other components. The short
term prediction task can be formulated as follows: using 10
past data ui = [x(1)i−10, . . . , x(1)i−1]

T as the input to pre-
dict x(k)i k = 1, 2, 3. For each prediction only the input sig-
nal x(1) and desired signal x(k) are available. We do not have
the whole three signals at the same time. In the first 3000 time
series, we randomly obtain 2000 time-steps to learn the filters,
and use the next 200 time-steps to test these algorithms. To
compare the prediction performances in a fair way, we run 50
independent simulations and the mean squared error (MSE)
and signal noise ratio (SNR) are recorded.

All kernel parameters involved in this experiment are set
as 1. For the KLMS algorithm the learning rates are set as
0.1 and 0.01. For our KRTRL algorithm, the learning rate is
set as 0.1 and the dimension of the hidden states is 2. The
teacher forcing technique is applied at every step (t = 1).
[xi(k), xi−1(k)] is used as teacher signal to train the KRS. For
testing, the hidden state corresponding to xi(k) is chosen as

the system output. The prediction performances are tabulated
as below:

Des. Algorithms SNR MSE
KLMS(η = 0.1) 25.741+/-1.7716(dB) 0.00096218+/-0.00083813

x(1) KLMS(η = 0.01) 12.1933+/-2.1166(dB) 0.021771+/-0.013692
KRS(η = 0.1) 24.3963+/-1.6035(dB) 0.0012755+/-0.00097267

KLMS(η = 0.1) -2.223+/-0.25915(dB) 1.6834+/-0.12373
x(2) KLMS(η = 0.01) 3.483+/-0.27802(dB) 0.44998+/-0.026276

KRS(η = 0.1) 23.4077+/-2.4422(dB) 0.0051275+/-0.002389

KLMS(η = 0.1) -2.5039+/-0.22352(dB) 1.5296+/-0.11027
x(3) KLMS(η = 0.01) 3.0712+/-0.25711(dB) 0.42038+/-0.024646

KRS(η = 0.1) 17.9362+/-1.7771(dB) 0.014737+/-0.005885

Table 1. Using x(1) as inputs to predict x(1), x(2) and x(3)

From these results, one can conclude that both algorithms
can obtain good prediction performances while using x(1) to
predict x(1). But the KLMS algorithm get poor performances
when predicting x(2) or x(3) time series using x(1). While,
our algorithm can obtain good prediction performances in
predicting the there dimensional system. This is because
the mappings from x(1) to x(2) or x(3) are more complex
and the error increases with iterations proportionally to the
largest Lyapunov exponent of the system that produced the
time series, which is positive in this case (Chaotic system).
The KRS learned by the KRTRL algorithm is designed to
describe the system dynamics, which can quantify better the
data structure to implement the prediction task. Therefore,
there is no surprise that our proposed algorithm can still be
successful.

5. CONCLUSION

In this paper, we proposed a kernel recurrent system (KRS)
which can describe general state-space model recurrent net-
works and implement the nonlinear computations in the
RKHS. Furthermore, a kernel real-time recurrent learning
(KRTRL) algorithm is developed to train the KRS. The
teacher forcing technique is applied to modify the KRTRL al-
gorithm to improve the learning tasks. The KRTRL algorithm
is applied to Lorenz time series prediction, and the prediction
performances outperforms the KLMS algorithm when the
input to output mappings are non-stationary.

The computational complexity of the KRTRL algorithm
is similar to the KLMS increasing linearly with the sample
number i. However, because of the recurrent architecture, the
whole coefficients are updated when an new sample arrives,
unlike the KLMS algorithm, which only updates current co-
efficient. This property also enhance the learning capability
of this algorithm. In the experiment, the teacher forcing is
applied at every step. We can also increase the interval t, like
t = 2 or 3, to learn the state dynamics better, which however
requires the smaller learning rate and longer training time.
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