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ABSTRACT

Given n i.i.d. samples from some unknown nominal density

f0, the task of anomaly detection is to learn a mechanism that

tells whether a new test point η is nominal or anomalous, un-

der some desired false alarm rate α. Popular non-parametric

anomaly detection approaches include one-class SVM and

density-based algorithms. One-class SVM is computationally

efficient, but has no direct control of false alarm rate and usu-

ally gives unsatisfactory results. In contrast, some density-

based methods show better statistical performance but have

higher computational complexity at test time. We propose a

novel anomaly detection framework that incorporates statisti-

cal density information into the discriminative Ranking SVM

procedure. At training stage a ranker is learned based on rank-

ings R of the average k nearest neighbor (k-NN) distances of

nominal nodes. This rank R(x) is shown to be asymptoti-

cally consistent, indicating how extreme x is with respect to

the nominal density. In test stage our scheme predicts the

rank R(η) of test point η, which is then thresholded to re-

port anomaly. Our approach has much lower complexity than

density-based methods, and performs much better than one-

class SVM. Synthetic and real experiments justify our idea.

Index Terms— Anomaly Detection, One-class SVM, p-

value, Ranking SVM

1. INTRODUCTION

Anomaly detection [1] refers to the problem of identifying

statistically significant deviations of data from an expected

nominal distribution. These deviated data patterns are often

referred to as anomalies or outliers. Anomaly detection has

found various applications in many domains such as credit

fraud detection, cyber intrusion detection, and video surveil-

lance. Typically based on a training set of nominal examples,

anomaly detection techniques design a decision rule such that

the detection power is maximized while the false alarm rate is

controlled under some prescribed significance level α.

Classical parametric methods [2] for anomaly detection

assume some family of the unknown nominal density fol-
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lowed by estimating the parameters from training data. While

these methods provide a statistically justifiable solution when

the assumptions hold true, they are likely to suffer from model

mismatch and lead to poor performance.

During recent years non-parametric approaches have been

widely applied to anomaly detection tasks. Such methods

make fewer assumptions on the data and tend to be more

stable. Typical approaches includes one-class SVM [3] and

density-based methods [4, 5, 6, 7, 8]. One-class SVM at-

tempts to find decision boundaries by mapping nominal data

to a high-dimensional kernel space and separate them from

the origin with maximum margin. While attaining computa-

tional efficiency, there is no direct way known to control the

false alarm rate. The unawareness of the underlying density

could also lead to unsatisfactory performance. Density-based

methods such as minimum volume (MV) set estimation [4]

and geometric entropy minimization (GEM) [5] involve ap-

proximating high-dimensional quantities such as multivariate

density or MV set boundaries, which is computationally pro-

hibitive and unreliable. [6, 8, 7] propose to estimate the p-

value function based on k nearest neighbor (k-NN) distances

within the graph constructed from nominal points. While

providing better performance than one-class SVM, these ap-

proaches need expensive computations at test stage such as

calculating k-NN distance of test point, which makes them

inapplicable for tasks requiring real time processing.

In this paper, we propose an novel anomaly detection

framework that incorporates statistical density information

into the discriminative Ranking SVM procedure. A ranker is

learned through ranking algorithms such as Ranking SVM,

based on pair-wise comparison information of nominal data

points. An input preference pair (xi, xj) represents “xj is

more likely to be anomalous than xi” with respect to the

nominal density. These pairs are obtained from the ranking

of the average k-NN distance of each sample. We present

the asymptotic consistency of this ranking to justify the reli-

ability of preference pairs that are input to a Ranking SVM.

During test stages our method estimates the ranks of test

points, which are thresholded to report anomaly. Our scheme

not only performs much better than one-class SVM, but has

much lower complexity than density-based methods.

The rest of the paper is organized as follows. Section 2 de-

scribes our anomaly detection algorithm. Section 3 provides
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asymptotic analysis. Synthetic and real-world experiments

are reported in Section 4. Section 5 concludes the paper.

2. ANOMALY DETECTION ALGORITHM

Let S = {xi, x2, ..., xn} be the nominal training set, sam-

pled i.i.d from some unknown multivariate nominal density

f0(·) of d-dimension. Assume that a test sample η is drawn

from a mixture of the nominal density f0(·) and some known

anomalous density f1(·): f(η) = (1−π)f0(η)+πf1(η). For

simplicity, we assume that anomaly could happen everywhere

with the same probability, i.e., f1(·) is the uniform distribu-

tion. Anomaly detection task can be formulated as a compos-

ite hypothesis testing problem: H0 : π = 0 (nominal data)

versus H1 : π > 0 (anomaly).

The aim is to maximize the detection power under a de-

sired false alarm level: PF , P(decision = H1|H0) ≤ α.

In [6], it is proven that the uniformly most powerful test for

the above detection problem is:

D(η) =

{

H1 p(η) ≤ α

H0 otherwise
(1)

where p(·) is the p−value function defined as:

p(η) = P0

(

x :
f1(x)

f0(x)
≥

f1(η)

f0(η)

)

=

∫

{x:f0(x)≤f0(η)}

f0(x)dx

(2)

[6, 7] propose to use the rank R(x) of x among all nom-

inal points as an estimate of p-value p(x). This rank R(x) is

based on some statistic G, which involves density informa-

tion at x. During test stage this rank of test point is computed

and then thresholded to report anomaly. However, computing

R(η) has high computational complexity, which can be pro-

hibitive for real-time applications. Motivated by this fact, we

propose to learn a discriminative ranker based on the ranks

R of all training nominal points. While still maintaining sta-

tistical properties of R, the plug-in of discriminative ranking

scheme greatly reduces the complexity in test stage.

2.1. Ranking Based Anomaly Detection Algorithm

Our algorithm contains the following steps:

1. Rank Computation

For each training sample x, its rank in set S can be com-

puted as follows:

R(x) =
1

n

n
∑

i=1

II{G(xi)≥G(x)} (3)

where II{·} is the indicator function, and G(x) is the average

k-NN distance statistic introduced in [7]:

G(x) =
1

K

2K
∑

i=K+1

D(i)(x) (4)

where D(i)(x) is the i-th nearest neighbor distance of x

among {xi, x2, ..., xn}. It is shown that this statistic out-

performs other forms of G such as single k-NN distance or

ǫ-neighborhood density in [6]. To compute G, the U-statistic

bootstrapping technique [7] can be adopted to reduce vari-

ance.

2. Ranker Learning

From Step 1 our training set is now {(xi, R(xi))}. The

goal is to learn a ranker r that outputs an ordinal value r(xi)
for xi. A ranker can be trained by procedures such as Ranking

SVM [9] or Ordinal Regression [10].

We adopt the Ranking SVM to train our ranker r. The

Ranking SVM takes as input preference pairs (xi, xj), gener-

ates the following constraints and outputs weight w.

(xi, xj) ⇐⇒ wTΦ(xi) > wTΦ(xj) (5)

where Φ(xi) is the mapping from X to a high dimensional

kernel space. Details about Ranking SVM can be found in

[9].

Given n ranks, instead of generating
(

n
2

)

preference pairs,

we quantize the ranks to m rank levels Rq(·) ∈ {1, ..,m}.

A preference pair (xi, xj) is generated for every Rq(xi) >

Rq(xj), indicating that xj is “more anomalous” than xi.

These preference pairs are then fed into Ranking SVM. A

ranker r is output along with n sorted ordinal values r(xi) for

all nominal points.

3. Prediction

At test time, the ordinal value for η can be computed:

r(η) = wTΦ(η) (6)

Then the rank R̂(η) is estimated using Eq.(3) by replacing

G(·) with r(·). If R̂(η) falls under the false alarm level α,

anomaly is declared.

Our algorithm is summarized as follows:

Ranking Based Anomaly Detection Algorithm

i. Input:

Nominal training data S = {x1, x2, ..., xn}, desired false

alarm level α, and test point η

ii. Training Stage:

(a) Calculate ranks R(xi) for nominal data xi, using Eq.(3).

(b) Quantize the ranks R(xi) into m levels: Rq(xi) ∈
{1, ..,m}. Generate preference pairs (xi, xj) whenever their

quantized levels satisfy Rq(xi) > Rq(xj).

(c) Train a ranker r(·) through Ranking SVM.

iii. Testing Stage:

(a) Calculate r(η) for test point η according to Eq.(6).

(b) Estimate the rank R̂(η) according to Eq.(3), replacing

G(·) with r(·).
(c) Declare η as anomalous if R̂(η) ≤ α, otherwise nominal.
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2.2. Comparison With State-of-the-art Algorithms

The main advantages of our approach are summarized below:

(1) False alarm control: one-class SVM approach does not

have any natural control over the false alarm rate. In fact, as

shown in Fig.1 in Sec.4, some part of the receiver operating

characteristic (ROC) curve is missing. Our approach outputs

the rank of the test point scaling in [0, 1], which is a direct

estimate of false alarm probability and is compared with the

prescribed level α to report anomaly.

(2) Incorporating density information: Instead of some-

what heuristically separating nominal points from the origin

in the kernel space for one-class SVM, our approach learns

the ranker based on the ranks of points. These empirical

ranks R(x) are shown to converge asymptotically to the p-

value function p(x) in Sec.3, whose value indicates to what

extent x is likely to be an anomaly. So our approach explicitly

incorporates statistical density information, and outperforms

one-class SVM as will be shown in Sec.4.

(3) Complexity Reduction over density-based methods:

Computing distances from one point to n points takes O(dn).
Sorting takes O(n log n). So our training stage needs O(n2

(d + log n)), the same as aK-LPE, plus the time to train

an SVM ranker. However at test stage, our algorithm only

requires O(sd + log n) (s ≪ n being the number of sparse

support vectors), a big reduction from O(n(d + log n)) of

aK-LPE [7]. Meanwhile, our experiments show little perfor-

mance degradation from aK-LPE [7] which has full access to

k-NN distance information at test stage.

3. ANALYSIS

To justify the reliability of the ranks, we establish the asymp-

totic consistency of the ranks in this section. Specifically we

show that the rank R(η) converges to the p-value at η: p(η),
as n → ∞.

Suppose the nominal density f = f0 satisfies some reg-

ularity conditions: f is continuous and lower-bounded on

a compact support C: f(x) ≥ fmin > 0. It is smooth,

i.e. ||∇f(x)|| ≤ λ, where ∇f(x) is the gradient of f(·)
at x. Flat regions are not allowed, i.e. ∀x ∈ C, ∀σ > 0,

P {y : |f(y)− f(x)| < σ} ≤ Mσ, where M is a constant.

Theorem 1. By choosing K properly, as n → ∞, we have,

|R(η)− p(η)| → 0. (7)

The proof involves two parts:

(1) Show concentration of R(η) around its expectation

E [R(η)] through concentration of measure inequality.

(2) Show that E [R(η)] tends to p(η) as n → ∞.

We do not present detailed proofs here and refer the readers

to [7].

Remark: The p-value function p(x) is the volume outside

the level set of f containing x. Thresholding p(x) has been

identified as the uniformly most powerful rule for anomaly

detection [6]. For any two points xi and xj , p(xi) > p(xj)
indicates the level set containing xj completely covers that of

xi, or statistically, xj is more likely to be an anomaly than xi.

Based on this fact and the above theorem, it is reliable that we

feed pairs (xi, xj) with R(xi) > R(xj) into Ranking SVM,

to indicate that xj is “more anomalous” than xi.

4. EXPERIMENTS

In this section, we compare our approach with the density-

based method aK-LPE [7] and the one-class SVM [3] on both

synthetic and real-world data sets.

4.1. Implementation Details

In our simulations, the one-class SVM code in lib-SVM [11]

and the Ranking SVM package in SVM light [12] are used.

In this section, the Euclidean distance is used as distance

metric. The G statistic we adopt is the average k-NN distance

with k ranging from 4 to 20. Here we quantize ranks into

m=3 levels and generate preference pairs (xi, xj) whenever

Rq(xi) > Rq(xj). In practice, to reduce training time, we can

only select preference pairs with significant rank differences

(Rq(xi) − Rq(xj) > τ ). The RBF kernel is used for one-

class SVM and our approach. For the kernel parameter γ, we

first vary the regularization parameter ν (One-class SVM) or

C (Ranking SVM) for a fixed γ to obtain an empirical ROC

curve, and then vary γ to choose the best ROC curve in terms

of the maximum area under curve (AUC) principle.

4.2. Synthetic Data sets

We first apply our method for a Gaussian toy problem, where

the nominal density is: f0 ∼ 0.2N ([5; 0] , [1, 0; 0, 9]) +
0.8N ([−5; 0] , [9, 0; 0, 1]). To control false alarm at level α,

points with R̂(η) no bigger than α is claimed as anomaly.

We vary α to obtain the empirical ROC curve. The above

procedure is followed for the rest of this section.

The empirical ROC curves of our method and one-class

SVM along with the optimal Bayesian classifier is shown in

Fig.1 (a). We can see that our algorithm performs fairly close

to the optimal Bayesian classifier and much better than one-

class SVM, of which some part of the ROC curve is missing

due to lack of false alarm rate control. Fig.1 (b) shows the

level curves for the estimated ranks on the test data. We can

see that the empirical level curves represent the level sets of

the underlying density quite well.

The performance on another synthetic data set “Banana”

[13] is shown in Fig.2 (a). As shown in the figure, our detector

dominates the one-class SVM on this data set while performs

even better than the density-based aK-LPE. The testing time

for aK-LPE, oc-SVM and our method are 0.45s, 0.02s and

0.01s (with 67/1598 support vectors) respectively.
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Fig. 2. The ROC curves for one-class SVM and the proposed method on different data sets: (a) Banana, “+1” (nominal) vs.

“-1”, 2-dim, 1598 training points, 3702 test points (778 nominal). (b) USPS, digit “5” (nominal) vs. others, reduced 64-dim,

600 training points, 1500 test points (300 nominal). (c) Magic, gamma particles (nominal) vs. background, 10-dim, 1500

training points, 4000 test points (1000 nominal)
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Fig. 1. Performance on synthetic data sets: (a) ROC curve on

a two-component Gaussian Mixture data. (b) Level sets for

the estimated ranks. Here 600 training points, 200 nominal

and 1000 anomalous test points are used.

4.3. Real-world data sets

We also apply our anomaly detection method to the USPS

digit data set [14] and the Magic gamma telescope data set

[14]. For the USPS digit data set, we down-sampled the data

to a 64 dimensional space. Here instances of digit 5 are re-

garded as nominal and instances of other digits as anomaly.

The testing time for aK-LPE, oc-SVM and our method are

0.21s, 0.02s and 0.04s (with 254/600 support vectors) respec-

tively. As shown in Fig.2 (b), our algorithm clearly outper-

forms one-class SVM. In fact, our method achieves 100% true

detection rate at a false positive rate of around 50%, while

one-class SVM cannot achieve 100% true detection rate until

a false positive rate of 80%.

The Magic gamma telescope data set is used to classify

high energy gamma particles from cosmic rays in an atmo-

spheric telescope. Images of gamma-initiated photons are

recorded by the telescope. 10 attributes of the observed im-

ages are used as input features. Here we regard all gamma

particles as nominal data and background cosmic rays as

anomaly. The testing time for aK-LPE, oc-SVM and our

method are 0.42s, 0.02s and 0.01s (with 41/1500 support

vectors) respectively. Fig.2 (c) demonstrate that our method

outperforms one-class SVM by a large margin, and performs

comparable to aK-LPE.

4.4. Discussion

When generating pairwise preference constraints, only 3 rank

levels are assigned to the training data, which leads to rela-

tively few preference pairs and thus short training time. How-

ever, we observe little to none performance degradation com-

paring to a much bigger m=9. In fact, it turns out that our

algorithm is insensitive to parameters m or γ while one-class

SVM degrades significantly when the kernel parameter γ is

perturbed from optimum.

5. CONCLUSIONS

In this paper, we propose a novel anomaly detection frame-

work that combines statistical density information with the

discriminative ranking procedure. Our scheme learns a

ranker by making use of pair-wise orderings of the rank

R(x) of training samples. R(x) is the ranking of the aver-

age k-NN distance of x within the graph constructed from

nominal points, incorporates density information at x, and

is shown to be asymptotically consistent. Pairs (xi, xj) with

R(xi) > R(xj), indicating xj is more likely to be anoma-

lous than xi, are then fed into Ranking SVM to train the

ranker r(·). In test stage our method outputs the rank of test

point, which is thresholded to report anomaly. Compared

to existing non-parametric methods, our approach not only

incorporates statistical density information, leading to better

performance than one-class SVM, but also has much lower

complexity than density-based methods at test stage due to

the simple discriminative ranking scheme. Synthetic and real

experiments demonstrate the superiority of our method.
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