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ABSTRACT

We propose a novel kernel adaptive filtering algorithm,
dubbed Parallel HYperslab Projection along Affine Sub-
Spaces (Φ-PASS), which reuses observed data efficiently.
We first derive its fully-updating version that projects the
current filter onto multiple hyperslabs in parallel along the
dictionary subspace. Each hyperslab accommodates one of
the data observed up to the present time instant. The al-
gorithm is derived with the adaptive projected subgradient
method (APSM) based on which a convergence analysis is
presented. We then generalize the algorithm so that only a
few coefficients, whose associated dictionary-data are coher-
ent to the datum of each hyperslab, can be updated selectively
for low complexity. This is accomplished by performing the
hyperslab projections along affine subspaces defined with
the selected dictionary-data. Numerical examples show the
efficacy of the proposed algorithm.

Index Terms— kernel adaptive filter, projection algo-
rithms, reproducing kernel Hilbert space, the HYPASS algo-
rithm

1. INTRODUCTION

The power of the theory of reproducing kernel has been
proven by the success of support vector machine and its
related techniques since 1990’s. In the present century, a
considerable amount of attention has been paid to online al-
gorithms which is of great importance in signal processing;
see [1–6] among many others. The notable advantages of a
kernel adaptive filter include that it involves no local minima
unlike the neural network approach, and a marginal number
of parameters unlike a Volterra filter [6]. The design of kernel
is a challenging task in online/adaptive scenarios and it has
been firstly addressed in [7]. In the present work, an ade-
quate kernel is assumed available, as is also assumed in the
literature [1–6]. Relation to prior work will be discussed in
Section 3.

The goal of this paper is to develop a computationally-
efficient nonlinear adaptive filtering algorithm enjoying high
adaptation-capability. We propose a data-reusing kernel adap-
tive filtering algorithm based on the parallel projection onto
multiple hyperslabs along certain affine subspaces in a repro-
ducing kernel Hilbert space (RKHS). Each hyperslab accom-
modates a pair of input-output data and bounds the instanta-
neous error for the data pair. By performing the hyperslab
projections in parallel, the filter is updated in such a way that
the errors for multiple data pairs are suppressed simultane-
ously, hence enhancing the convergence and tracking perfor-
mance. We employ the parallel projection technique [8, 9]
for data-reusing rather than the affine projection algorithm
(APA) which has been reported to suffer from noise sensitiv-
ity [8]. We first derive a data-reusing algorithm, dubbed fully-
updating parallel hyperslab projection along affine subspaces

(Φ-PASS), and present its convergence analysis by using the
adaptive projected subgradient method (APSM).

The hyperslab projections are performed along the dic-
tionary subspace for exploiting all measurements to polish
the coefficients of dictionary data (see [10] for more details
about this idea). We then generalize the algorithm so that
each hyperslab projection can be performed along an affine
subspace which contains the current filter and whose under-
lying subspace is spanned by an arbitrary number of dictio-
nary element(s). The generalized algorithm is referred to sim-
ply as the Φ-PASS algorithm. If a single dictionary-datum
is selected that is maximally coherent to the datum of each
hyperslab, only a few coefficients are updated at each itera-
tion. This coherence-based selective-update strategy brings
a remarkably low complexity while taking significant bene-
fits from data-reusing. The numerical examples show clear
advantages of the proposed algorithm over the conventional
algorithms.

2. FULLY-UPDATING Φ-PASS ALGORITHM

Let ψ be a nonlinear system of which the input u belongs

to the compact input space U ⊂ R
L and the output d :=

ψ(u) takes a real value. We consider online scenarios in
which the data sequences (un)n∈N ⊂ U and (dn)n∈N ⊂
R arrive sequentially. We model the nonlinear function ψ
to be estimated as an element of the RKHS H associated
with a positive definite kernel κ : U × U → R, (x,y) 7→
κ(x,y) [11]. We denote by 〈·, ·〉 and ‖·‖ the inner product
and the norm defined in H, respectively. A popular exam-
ple of positive definite kernel is a Gaussian kernel κ(x,y) :=

exp(−ζ ‖x− y‖2
RL),∀x,y ∈ U , for a kernel parameter ζ >

0, where ‖·‖
NL

stands for the Euclidian norm. A kernel adap-

tive filter is given by the following expansion:

ϕn(u) =
∑

j∈Jn

hj,nκ (u,uj) , n ∈ N, (1)

where Jn := {j(n)1 , j
(n)
2 , · · · , j(n)rn } ⊂ {0, 1, · · · , n} is the

dictionary index set and hj,n ∈ R is the coefficient of κ(·,uj)
at time n. The set of rn functions {κ (·,uj)}j∈Jn

is called a
dictionary.

The key of the proposed algorithm is data-reusing.
Namely, each pair of data (un, dn) is exploited to polish
the coefficients at multiple time instants. The set of indices
indicating the set of data exploited at time n ∈ N is denoted
by In ⊂ {n, n − 1, · · · , 0}. A simple strategy is to use
the pmost recent input-output pairs (un, dn) , (un−1, dn−1) ,
· · · , (un−p+1, dn−p+1), i.e., In := {n, n−1, · · · , n−p+1},
and ϕn is updated in such a way that estimation errors for
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Fig. 1. A geometric interpretation of the fully-updating Φ-
PASS algorithm for ρ = 0.

those data diminish. Specifically, we employ the metric pro-
jections of the current filter ϕn onto the convex sets:

C(n)
ι := {g ∈Mn : (g(uι)− dι)

2 ≤ ρ} = Sι ∩Mn,

n ∈ N, ι ∈ In, (2)

where ρ ≥ 0 is the error bound and

Sι := {g ∈ H : (g(uι)− dι)
2 ≤ ρ} (bounded error),

Mn := span{κ (·,uj)}j∈Jn
(dictionary subspace).

Here, Sι is the bounded-instantaneous-error hyperslabs, and
Mn the subspace spanned by the dictionary elements. Since
ϕn ∈ Mn from (1), the projection of ϕn onto the convex set

C
(n)
ι = Sι ∩ Mn can be regarded as the projection of ϕn

onto the hyperslab Sι along the subspace Mn (see Fig. 1).
Here, in general, the projection of x ∈ H onto a nonempty
closed convex set K ⊂ H is the closest point of x in K and
is denoted by PK(x) := argminy∈K ‖x− y‖.

Now we derive the proposed algorithm which updates the

current filter ϕn by projecting it onto the convex sets C
(n)
ι ,

ι ∈ In, in parallel and then convexly combining the projec-
tions (see [9] for a comprehensive tutorial on this parallel-
projection strategy). Define the sequence of convex functions
(Θn)n∈N as follows:

Θn(g) :=
∑

ι∈In

ω
(n)
ι d(ϕn, C

(n)
ι )

νn
d(g, C(n)

ι ), g ∈ H, (3)

where d(g, C
(n)
ι ) := min

φ∈C
(n)
ι

‖g − φ‖ is the metric dis-

tance function between a point g and the set C
(n)
ι , νn :=

∑

ι∈In
ω
(n)
ι d(ϕn, C

(n)
ι ), and ω

(n)
ι > 0,∀ι ∈ In, satisfying

∑

ι∈In
ω
(n)
ι = 1, is the weight assigned to each setC

(n)
ι . The

additional weight d(ϕn, C
(n)
ι ) emphasizes those sets which

are more distant from the current filter ϕn than the other sets.
An application of APSM to the function sequence (Θn)n∈N

yields the following algorithm.

Algorithm 1 With J−1 := ∅, the dictionary index set Jn is
defined as

Jn :=

{

Jn−1 ∪ {n}, if maxj∈Jn
c(un,uj) ≤ σ,

Jn−1, otherwise,

where σ > 0 and c (u,v) := |κ(u,v)|√
κ(u,u)

√
κ(v,v)

is the coher-

ence [5]. For the initial estimate ϕ0 := 0, generate the se-
quence (ϕn)n∈N of nonlinear filters by

ϕn+1 := ϕn+λn

(

∑

ι∈In

ω(n)
ι P

C
(n)
ι

(ϕn)− ϕn

)

, n ∈ N,

where λn ∈ (0, 2Ln) is the step size with the extrapolation
coefficient

Ln :=

∑

ι∈In
ω
(n)
ι

∥

∥

∥
P
C

(n)
ι

(ϕn)− ϕn

∥

∥

∥

2

∥

∥

∥

∑

ι∈In
ω
(n)
ι P

C
(n)
ι

(ϕn)− ϕn

∥

∥

∥

2 ≥ 1. (4)

In the exceptional case that the denominator is zero, Ln := 1.

Theorem 1 (Convergence Analysis [12, 13])

(a) Monotone approximation: Assume that
Ωn := arginfg∈H Θn(g) 6= ∅ and that ϕn 6∈ Ωn.

Then, for any λn ∈
(

0, 2
(

1− Θ∗
n

Θn(ϕn)

))

, where

Θ∗
n := infg∈H Θn(g), ‖ϕn+1 − ϕ∗‖ < ‖ϕn − ϕ∗‖,

∀ϕ∗ ∈ Ωn.

In the following, suppose that (i) (λn)n∈N ⊂ [Lnε1,Ln

(2 − ε2)] ⊂ (0, 2Ln), ∃ε1, ε2 > 0 and that (ii) there

exists N0 ∈ N such that
⋂

ι∈Ĩn,n≥N0
C

(n)
ι has a rela-

tive interior with respect to the subspace
⋂

n≥N0
Mn =

MN0
, where Ĩn := {ι ∈ In : ϕn 6∈ C

(n)
ι }.

(b) Convergence and asymptotic optimality: The se-
quence (ϕn)n∈N generated by Algorithm 1 converges to
some ϕ̂ ∈ H and limn→∞ Θn(ϕn) = limn→∞ Θn(ϕ̂)
= 0.

(c) Characterization of the limit point: Suppose that

infn≥N0,ι∈In
ω
(n)
ι > 0. Then, the limit point is char-

acterized by ϕ̂ ∈ lim infn→∞

⋂

ι∈Ĩn
C

(n)
ι .

Proof: The claims are readily verified by [12, Theorem 2,
Proposition 3] and [13, Theorem 1].

3. THE Φ-PASS ALGORITHM

We generalize Algorithm 1 for deriving a low-complexity ver-
sion. The idea for complexity reduction is to select and update
only a few coefficients hj,n of κ(·,uj) that are maximally co-

herent to κ(·,uι), ι ∈ In. To be more specific, at time instant
n ∈ N, each data pair (uι, dι), ι ∈ In, is exploited to polish

only a few, say s
(n)
ι (≤ rn), selected coefficients {hj,n}j∈J

(ι)
n

for some J (ι)
n := {j(n,ι)1 , j

(n,ι)
2 , · · · , j(n,ι)

s
(n)
ι

} ⊂ Jn.

We constrain the direction vector of the projection onto
each hyperslab Sι to the subspace spanned by the selected
dictionary elements that are maximally coherent to κ(·,uι):

M (n)
ι := span{κ(·,uj)}j∈J

(ι)
n
, ι ∈ In.
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This is accomplished by projecting the current filter onto

C(n)
ι := {g ∈ V (ι)

n : (g (uι)− dι)
2 ≤ ρ} = Sι ∩ V (ι)

n ,

ι ∈ In, (5)

where

V (n)
ι :=M (n)

ι +ϕn := {f +ϕn : f ∈M (n)
ι }, ι ∈ In.

The Φ-PASS algorithm is given exactly by Algorithm 1 with

C
(n)
ι defined by (5), instead of (2). The current filter ϕn is

projected onto the convex sets C
(n)
ι in parallel, or equiva-

lently it is projected onto the hyperslabs Sι along the affine

subspaces V
(n)
ι ; the name of Φ-PASS comes from this geo-

metric property. The projections P
C

(n)
ι

(ϕn) have the follow-

ing closed-form expression:

P
C

(n)
ι

(ϕn) = ϕn+ς
(n)
ι

|dι − ϕn (uι)| − ρ
∑

j∈J
(ι)
n

α
(ι)
j κ (uι,uj)

P
M

(n)
ι

(κ (·,uι)) ,

Here, ς
(n)
ι := sign(dι − ϕn(uι)), if |dι − ϕn(uι)| > ρ, and

ς
(n)
ι := 0, otherwise, and P

M
(n)
ι

(κ(·,uι)) =
∑

j∈J
(ι)
n
α
(ι)
j

κ(·,uj) with
[

α
(ι)

j
(n,ι)
1

, α
(ι)

j
(n,ι)
2

, · · · , α(ι)

j
(n,ι)

s
(n)
ι

]T

= K†
ι,nyι,n,

where K†
ι,n is the Moore-Perose pseudo-inverse of the

s
(n)
ι × s

(n)
ι kernel matrix Kι,n whose (s, t) entry is given by

[Kι,n]s,t := κ
(

u
j
(n,ι)
s

,u
j
(n,ι)
t

)

and yι,n is a s
(n)
ι × 1 vector

whose sth component is given by [yι,n]s := κ
(

u
j
(n,ι)
s

,uι

)

.

Design of V
(n)
ι and geometric interpretation: A sim-

plest example is to select the most coherent one for each

ι ∈ In, i.e., J (ι)
n := argmaxj∈Jn

c(uι,uj), and in this

case s
(n)
ι = 1, ∀ι ∈ In, ∀n ∈ N, with probability one.

Geometrically, such a function κ(·,uj) is selected that has
the least angle to the normal vector of Sι ∩ Mn in Mn.

See Fig. 2 in which the arrow on V
(n)
ι has a smaller angle

with the normal vector than the arrow on another affine

subspace V̂
(n)
ι . The above interpretation is justified by

〈κ(·,uι), κ(·,uj)〉 = 〈PMn
(κ(·,uι)) + PM⊥

n
(κ(·,uι)),

κ(·,uj)〉 = 〈PMn
(κ(·,uι)), κ(·,uj)〉. Here, the first equality

Table 1. Computational complexity of the proposed and con-
ventional algorithms.

QKLMS rnL
HYPASS

rnL+O(s3) + (L2 + 1)s2 + (2− L
2 )s

HYPASS (full) rn(L+ 2) + r2n +O((rn − 1)2)
PKLMS rn(L+ 2) + 2r2n +O((rn − 1)2)

KAP rn(L+ p2 + 2p) +O(p3) + 2p2 + p

Proposed
rnL+ pO(s3)

+(L2 + 2p)s2 + (−L
2 + 2p+ 1)s

Proposed (full)
rn(L+ 2p+ 1) + 2pr2n +O((rn − 1)2)
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Fig. 3. Comparisons of the proposed and conventional algo-
rithms in computational complexity for L = 2 and p = 5.

is due to the orthogonal decomposition (M⊥
n is the orthog-

onal complement of Mn) and the second equality is verified
by κ(·,uj) ∈Mn.

In contrast, the computationally most expensive example

is J (ι)
n = Jn, ∀ι ∈ In, ∀n ∈ N, which reproduces the fully-

updating Φ-PASS algorithm presented in the previous section.
Among many other possibilities, a reasonable option would
be to select the s most coherent ones for each uι unless the
coherence values for some of them are below some prespeci-
fied threshold.
Relation to prior work: Letting In := {n}, ∀n ∈ N,
reproduces the HYPASS algorithm [10] which solely ex-
ploits the current data at each iteration. Letting in addition,

J (n)
n := argmaxj∈Jn

c(un,uj), we obtain the quantized

kernel normalized LMS (QKNLMS) algorithm, which coin-
cides with the quantized kernel LMS (QKLMS) algorithm
[14] in the case of Gaussian kernels. Letting In := {n},

∀n ∈ N, J (n)
n = Jn, and λn :=

∑
j∈Jn

αjκ(un,uj)

κ(un,un)
repro-

duces a projected kernel normalized LMS (PKNLMS), which
coincides with the sequential projection algorithm (referred
to as PKLMS) [15] in the case of Gaussian kernels. Hence,
the Φ-PASS algorithm provides a family of algorithms in-
cluding the HYPASS, QKNLMS, and PKNLMS. In the case

of Gaussian kernels, the Φ-PASS algorithm for s
(n)
ι = 1 can

be viewed as quantizing each data uι, ι ∈ In, to its nearest
point in the dictionary data set {uj}j∈Jn

.
The existing data-reusing algorithm is based on affine

projection [16, 17], including the kernel affine projection
algorithms (KAPAs) [18] and the kernel affine projection
(KAP) algorithm [5]. A related, but not data-reusing, algo-
rithm named the quantized kernel APSM (QKAPSM) has
also been proposed [19]. The proposed algorithm, as well as
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Table 2. Parameter settings for each algorithm.
QKLMS r̄ = 121.54, λn = 0.35, σ = 0.854
HYPASS r̄ = 121.54, λn = 0.35, σ = 0.854

HYPASS (full) r̄ = 121.01, λn = 0.35, σ = 0.854
PKLMS r̄ = 121.68, σ̃ = 1.0× 10−5

KAP r̄ = 120.75, λn = 0.03, σ = 0.854
proposed r̄ = 120.31, λn = 0.1Ln, σ = 0.85

proposed (full) r̄ = 120.74, λn = 0.1Ln, σ = 0.85

Table 3. Average MSEs and computational complexity.

Average MSE [dB] Complexity

QKLMS −34.95 480
HYPASS −34.95 485

HYPASS (full) −36.67 29281
PKLMS −31.10 43561

KAP −36.10 16090
Proposed −37.32 531

Proposed (full) −40.00 149000

QKAPSM, is based on parallel projection [8, 9, 20]. In the
following section, we compare the performance of the pro-
posed algorithm with KAP as well as the HYPASS, QKLMS,
and PKLMS algorithms.
Computational complexity: Computational complexity of

the proposed and related algorithms is presented in Table 1.1

HYPASS (full) and Proposed (full) in the table indicate the
fully-updating HYPASS algorithm and the fully-updating Φ-
PASS algorithm, respectively. For comparisons, Fig. 3 illus-
trates how the computational complexity increases with in-
creasing dictionary size rn. It is seen that the proposed algo-
rithm for s = 1 requires 700 times less complexity than the
PKLMS algorithm for rn = 200. Moreover, the proposed al-
gorithm is comparable to HYPASS for s = 1 and QKLMS
in complexity, whereas it considerably outperforms them in
MSE performance, as shown in the following section.

4. NUMERICAL EXAMPLES

We compare the performance of the proposed algorithm with
the conventional algorithms in the application, estimating a
function given as [18]

dn = xn − 0.2dn−1 − dn−1xn−1 +0.1xn−1 +0.4dn−2,

where xn is the input of the unknown function. This unknown
function is predicted by a kernel adaptive filter with its input

un := [dn, dn−1, dn−2, yn−1]
T ∈ U ⊂ R

L (L = 4), where

d̂n−1 := ϕn−1(un−1) which is a replica of dn−1 accommo-
dating the past data dn−3, dn−4, · · · . In this example, the in-
put of the unknown function is assumed white and uniformly
distributed within the range of [−0.5, 0.5]. We employ the
Gaussian kernel κ(x,y) := exp(−ζ‖x− y‖2

RL) for ζ = 2.0.
The p most recent input-output data are used for each up-

date, i.e., In := {n, n − 1, · · · , n − p + 1}, for both the
proposed and KAP algorithms, and the data-reusing factor
(the number of hyperslabs for the proposed algorithm and the
affine order for KAP) is set to p = 15. For stability, we add

1A careful inspection of the matrix Kι,n suggests that, in the fully-

updating Φ-PASS algorithm, K
†
ι,n 6= K

†
ι,n−1

only when the dictionary

size increases and that K
†
ι,n can be computed with K

†
ι,n−1

by the matrix

inversion lemma [21] in the O((rn − 1)2) complexity.
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the regularization parameter εL := 10−5 to the denomina-
tor of the extrapolation coefficient Ln. Uniform weights are

used; i.e., ω
(n)
ι = (min{p, n+ 1})−1

for all ι ∈ In. The
error bound is set to ρ = 0. The fully-updating versions and
s = 1 are tested for the proposed and HYPASS algorithms.
For s = 1, HYPASS is reduced to a normalized version of
QKLMS. ( In the present case of Gaussian kernel, the nor-
malization factor is one. See Relation to prior work in the
previous section.) The set of parameters employed in the ex-
periments is listed in Table 2. The step size λn, the coherence
threshold σ, and the distance threshold σ̃ are chosen so that
each algorithm attains the best performance. The regulariza-
tion parameter for KAP is set to ε := 3.0× 10−4, which was
chosen so as to achieve the best performance.

Fig. 4 depicts the MSE learning curves for each algorithm.
One can see that the proposed algorithms outperform the con-
ventional algorithms in the steady state MSE. Moreover, the
proposed algorithm and KAP, both of which reuse past data,
converges faster than HYPASS, PKLMS and QKLMS. Ta-
ble 3 shows the average MSEs and computational complex-
ity. Remarkably, the proposed algorithm for s = 1 attains
approximately 0.65 − 6.22 [dB] lower than HYPASS, KAP,
and PKLMS despite its lower complexity. We finally men-
tioned that PKLMS is implemented in exactly the same way
as in [15] and its step size is identically one. By extending the
method in [15] so that the step size can be chosen within the
range of [0, 2], PKLMS could attain performance comparable
to QKLMS (and HYPASS for s = 1).

5. CONCLUSION

This paper has presented the Φ-PASS algorithm, which reuses
observed data efficiently by means of parallel hyperslab pro-
jection along affine subspaces. The efficiency, in the partic-
ular case of one-dimensional affine subspaces, comes from
the fact that only one coefficient is updated per datum. The
coefficients to be updated are selected based on the simple
coherence criterion. Numerical examples have shown that the
proposed algorithm outperforms the existing kernel adaptive
filtering algorithms with low complexity.
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