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ABSTRACT

Unlike multi-class problems, the low variance directions in
the training data are important for one-class classification.
However, projecting in these directions before classification
will result in loss of important data properties. This paper
introduces a Covariance-guided One-Class Support Vector
Machine (COSVM) classification method which empha-
sizes the low variance projectional directions of the training
data without compromising any important characteristics.
COSVM combines the global information from the covari-
ance matrix of the training data with the local information of
Support Vectors. Our proposed method is a convex optimiza-
tion problem resulting in one global solution, which can be
found efficiently with the help of existing numerical methods.
The method also keeps the principal structure of the OSVM
method intact, and can be implemented easily with the exist-
ing OSVM applications. Comparative experimental results
with contemporary one-class classifiers on numerous bench-
mark datasets verify that our method results in significantly
better performance.

Index Terms— Covariance, SVM, Outlier Detection.

1. INTRODUCTION

In one-class classification, the objective is to distinguish a par-
ticular class of data (targets) from other data points (outliers)
[1]. One-class classification might be necessary when the out-
lier data is too costly to measure or badly sampled [2].

The two major categories of one-class classifiers are
density-based and boundary-based [1]. Density-based meth-
ods rely on the estimation of the probability density function
(PDF) of the target class [3, 4]. In boundary-based classifiers,
the boundary points around the target class are used to clas-
sify an incoming data point. Usually, the boundary estimation
is formed into a convex optimization problem [5, 2, 6].

The problem with the existing one-class classification
methods are that none of them consider the full scale of infor-
mation available for classification. In density-based methods,
solely the overall class probability distribution is used, which
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can be inaccurate, specially in case of small number of train-
ing samples [2]. It is reasonable to assume that the boundary
data points are more important than the overall class distribu-
tion. In other words, the “local information” available through
the boundary data points are not given any special treatment
in density-based methods. On the other hand, in boundary-
based methods, only boundary data points are considered to
build the model. These points do not completely represent the
overall class. In other words, the boundary-based methods
only consider the available local information. The “global
information” available through estimated class distribution
is not taken into account. Also, unlike multi-class classi-
fication problems, the low variance directions of the target
class distribution are crucial for one-class classification [7].
Boundary-based methods do not put any special emphasis on
these low variance directions. However, finding the optimal
number of directions to retain is also not possible because of
the bias-variance dilemma [2], which implies that projecting
in specific directions before classification can increase the
total error due to loss of important data characteristics.

The motivation behind our proposed method is to use the
robustness of the boundary-based classifiers while emphasiz-
ing the small variance projectional directions. We want to
combine the global information of the training data with the
local information obtained through boundary-based methods.
Generally, the estimated covariance matrix represents the
global information. By incorporating the covariance matrix
into the minimization problem of the well-known One-class
Support Vector Machine (OSVM) method [6], we can em-
phasize the low variance directions. We call our proposed
method the Covariance-guided One-Class Support Vector
Machine (COSVM) method. The degree of emphasis on the
covariance matrix can be elegantly controlled through one
parameter only (details in Section 3). COSVM does not in-
crease the overall computational complexity of the OSVM
method and results in a convex optimization problem with
one global optimum solution, which can be found efficiently
using existing numerical methods. Since COSVM keeps the
basic formulation of the OSVM problem unchanged, it can be
implemented through existing OSVM packages with minimal
coding.

The rest of the paper is organized as follows: In Sec-
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tion 2, we briefly discuss the OSVM method. In Section 3,
we formulate our proposed COSVM method and provide a
schematic comparison with OSVM. Section 4 provides vari-
ous experiments on how to properly utilize COSVM for op-
timal usage. We also provide comparative results with the
Gaussian, Parzen [8], k-NN [9], Support Vector Data De-
scription (SVDD) [2] and OSVM [6] classifiers on numerous
benchmark datasets. Finally, Section 5 provides conclusive
remarks.

2. ONE-CLASS SVM

Let X = {xi}Ni=1 represent the training dataset of N sam-
ples. Since real-world data has inherent non-linearity, SVM-
based methods try to map the data samples to a higher dimen-
sional feature space F , where linear classification might be
achieved. Let, the target class be mapped to a higher dimen-
sional feature class F = {Φ(xi)}Ni=1 by the function Φ.

One-class SVM (OSVM) tries to find the hyperplane that
separates the training data from the origin with maximum
margin. It can be modeled by the following optimization
problem:

min
w ̸=0,ρ

1

2
wTw − ρ+

1

vN

N∑
i=1

ξi,

s.t. wTΦ(xi) ≥ ρ− ξi, ξi ≥ 0 ∀i = 1, . . . N. (1)

Here, ξi are the slack variables to the optimization prob-
lem. v ∈ (0, 1] is the key parameter, which controls the
fraction of outliers and fraction of support vectors (SVs) [6].
Φ(x) = (fx

1 , f
x
2 , . . . , f

x
N ) : X → F describes the non-linear

mapping from the input space to the feature space for the in-
put variable x. In practice, the kernel trick [10] is used to cal-
culate the mapping F , where a kernel function K calculates
the inner products of the higher dimensional data samples:
K(xi, xj) =< Φ(xi),Φ(xj) >,∀i, j ∈ {1, 2, . . . , N}. The
solutions w∗ and ρ∗ form the decision hyperplane of OSVM.

As stated before, OSVM is a boundary-based method,
which only considers the boundary data points (SVs) to build
a model of the training data distribution. The small variance
projectional directions are not provided any special consider-
ation, which can result in better classification performance.

3. THE PROPOSED METHOD

The purpose of our proposed method is to incorporate the
global information available through the estimated covariance
matrix of our target class. This global information will retain
the low variance projectional directions. By incorporating this
into the OSVM optimization problem, we can design a classi-
fier that retains both global and local information and, hence,
can provide better performance.

The justification for incorporating covariance matrix into
the OSVM optimization problem can also be analyzed from

the point of view of discriminant analysis. In Kernel Fisher
Discriminant Analysis (KFD)[11], the objective is to learn a
weight vector that projects the data points onto a direction
that maximizes the between-class variance and minimizes the
within-class variance. The optimum weight vector u can be
described by:

u =
N∑
i=1

λiΦ(xi), (2)

where, λi, i = 1, . . . , N represent the KFD weight vector
coefficients.

Now, by solving the OSVM optimization problem, we
will show that OSVM tries to estimate the weight vector
components similarly. We use Lagrange multipliers to solve
the OSVM optimization problem [6]. By introducing the
lagrange variables, Problem (1) becomes the following:

L(w, ρ, ξ, α, β) =
1

2
wTw − ρ+

1

vN

N∑
i=1

ξi

−
N∑
i=1

αi(w
TΦ(xi)− ρ+ ξi)−

N∑
i=1

βi − ξi. (3)

Setting the derivatives to the primal variables to zero, we ob-
tain:

w =
N∑
i=1

αiΦ(xi), (4)

and

αi =
1

vN
− βi ≤

1

vN
,

N∑
i=1

αi = 1. (5)

Substituting Equation (4) Equation (5) into Equation (3),
we find the dual problem of OSVM:

min
α

αTQα (6)

s.t. 0 ≤ αi ≤
1

vN
,

N∑
i=1

αi = 1,

where, α = (α1, . . . , αN ). Q is the kernel matrix for the
training data i.e.:

Q(i, j) = K(xi, xj), (7)
i = 1, . . . , N ; j = 1, . . . , N.

Comparing Equation (4) and Equation (2), we can imme-
diately see that the form of the two weight vectors u and w
are similar. In both cases, we are trying to find a weight vector
that spans across all the training data points. The key differ-
ence is the way the components λi and αi are being calcu-
lated. KFD uses the within-class and between-class scatter
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matrices, while OSVM uses support vectors. As described
before, both the global information and local information is
important for one-class classification. We need to provide
special attention to the small variance directions. In KFD,
the within-class distance is minimized. The within-class dis-
tance is represented through the within-class scatter matrix,
which is analogous to the covariance matrix in the one-class
case. Intuitively, we can say that incorporating the covariance
matrix into the minimization problem of OSVM will result in
putting more emphasis on the low variance directions. Hence,
we plug the covariance matrix into the OSVM dual problem,
and balance the contribution of the kernel matrix Q and the
covariance matrix through our control parameter η. Our pro-
posed Covariance-guided OSVM (COSVM) method can be
described by the following optimization problem:

min
α

αT (ηQ+ (1− η)∆)α (8)

s.t. 0 ≤ αi ≤
1

vN
,

N∑
i=1

αi = 1,

where, ∆ is the “kernel covariance matrix” and can be
defined as follows [11]:

∆ = Q(I − 1N )QT , (9)

where, Q is the kernel matrix (Equation (7)), I is the iden-
tity matrix and 1N is a matrix with all entries 1

N .
Comparing this with Equation (6), we see that we are

modifying the objective function of the optimization prob-
lem to incorporate kernel covariance matrix ∆. The extent
of “contribution” of our kernel matrix Q and the covariance
matrix ∆ is controlled by the parameter η, which can take
values between 0 and 1. A value of 0 results in ignoring Q
completely, while a value of 1 results in the opposite. For
real-world problems, a value in-between will strike the per-
fect balance between Q and the small variance directions ob-
tained through ∆. The proposed method still results in a con-
vex optimization problem, since both Q and ∆ are positive
definite [12]. As a result, the solution to this optimization can
be found efficiently using numerical methods.

Figure (1) shows a schematic comparison of OSVM and
COSVM when the optimal parameter value lies in between
0 and 1 (0 < η < 1). The linear projection direction for
OSVM (depicted by dotted arrows) results in huge overlap
between the example target and outlier data (circled by dot-
ted boundary). However, due to the extra importance given
to the lower variance directions, the hyperplane for COSVM
(the solid line) is pulled towards the direction of small vari-
ance. As a result, the COSVM projection direction (depicted
by solid arrows) results in much less overlap (circled by solid
boundary). In this way, the proposed classifier can result in
better overall performance by fusing both local and global in-
formation.

Decision
hyperplane 
(COSVM)

Targets

Outliers

Decision
hyperplane 
(OSVM)

Overlap from 
   OSVM

(Less) overlap 
from COSVM

Low
Variance

Fig. 1. Schematic comparison of OSVM and COSVM.

4. EXPERIMENTAL RESULTS

In this section, we provide detailed experimental analysis and
results for our proposed method, performed on benchmark
real-world datasets and compared against contemporary one-
class classifiers. One important step for achieving better clas-
sification with COSVM is finding the appropriate value for η.
Since in most cases, one-class problems do not have outlier
examples, the value of η can’t be tuned via cross validation.
We use an indirect approach to optimize η. Figure (2) shows
the effect of changing the value of η on an artificially gen-
erated 2D Gaussian Dataset (radial-basis kernel was used for
this experiment. The parameter v for OSVM was fixed to
0.2). We see that the target boundary is being “expanded” as
η value decreases. With decreasing η values, more weight is
shifted towards the covariance matrix. As a result, the low
variance directions are being assigned more importance and
the target boundary is being expanded in those directions.

However, we need to use a stopping criterion to find the
optimum η value. We use the fraction of outliers as our stop-
ping criterion. The fraction of outliers is determined by cal-
culating what fraction of the training samples are deemed as
outliers by the constructed target boundary. We use a pre-
defined lowest fraction of outliers allowed (fOL) as stopping
criterion. For a new dataset, we keep slowly decreasing the
value of η (starting from 1) and observe the fraction of out-
liers. When it hits the value of fOL, we stop and use the
current η value for that particular dataset. This method of op-
timization results in superior performance, since we are con-
sidering both local and global information.

To depict the performance gain by using COSVM, we
compare it with the k-NN, Parzen, SVDD and OSVM clas-
sifiers on 8 datasets 1. We have primarily focused on medi-
cal datasets in our experiments, as medical diagnosis is one
of the key applications of one-class classification [13]. The
datasets were picked carefully to cover varying feature space

1Obtained from: http://prlab.tudelft.nl/users/
david-tax.
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Fig. 2. COSVM boundaries for different η values.

Dataset Number of Features k-NN Parzen Gaussian SVDD OSVM COSVM
Haberman’s Survival(< 5 years) 3 43.33 44.26 51.36 56.93 62.85 68.37
Haberman’s Survival(> 5 years) 3 62.55 67.97 60.10 68.12 68.62 69.87
Liver(diseased) 6 60.02 59.9 59.59 60.93 61.73 65.16
Liver(healthy) 6 50.34 49.69 50.76 62.5 63.7 64.96
SPECT Images(normal) 44 84.28 96.45 93.90 92.32 95.29 96.79
SPECT Images(abnormal) 44 19.74 41.29 26.39 57.95 69.49 72.46
Gene Expression(healthy) 1908 61.5 50 68.125 55.5 72.81 72.81
Gene Expression(tumor) 1908 68.86 50 60.68 67.84 72.48 74.6

Table 1. Average AUC of each method for the 8 datasets (best method in bold, second best emphasized). The second column
lists the feature dimension for each dataset.

dimensions (second column in Table (1)). The Area Under
the Curve (AUC) for the Receiver Operating Characteristic
(ROC) curves [14] are presented in our results, which is a
common measure of performance for one-class classification
[15]. To ensure unbiased results, we average the result over
10 models for each dataset, which were created by removing
10% randomly picked data points from the target class and
adding it to the outliers each time. For k-NN, Parzen, Gaus-
sian and SVDD method, we use the popular DDTools toolbox
[16]. The parameter fraction of rejection [7] was set to 0.2 for
these methods. The other necessary parameters are optimized
internally within the toolbox. For OSVM and COSVM, we
use the SVM-KM toolbox [17]. The parameter v for OSVM
was set to 0.2, while fOL for COSVM was set to 0.1. For ker-
nelization in SVDD, OSVM and COSVM, we use the radial
basis kernel [10]. The kernel width σ was set to the value for
which the fraction of SVs does not decrease any further. This
ensures proper scaling of the data [6].

Table (1) contains the average AUC values obtained for
the classifiers on each dataset. As we can see, COSVM per-
forms significantly better when compared to other methods
in most cases. This strengthens our claim that by empha-
sizing the small variance directions with the incorporation of
the covariance matrix, COSVM can indeed provide improved
performance. In general, we see that the performance of k-
NN, Gaussian and Parzen classifiers are poor when compared
to the SVM-based classifiers (SVDD, OSVM and COSVM).
This is because of the limitations inherent in these classifiers.
Since k-NN classifies solely based on neighboring points, it

is sensitive to outliers [18]. The Gaussian classifier assumes
that the underlying distribution is Gaussian, which is not al-
ways the case for real datasets. The Parzen classifier is prone
to degraded performance in case of high-dimensional data
[19], which is clear from the poor results on the Gene Expres-
sion datasets (1908 features). Among the SVM-based clas-
sifiers, COSVM considerably outperforms the other two. As
stated before, COSVM combines both local and global infor-
mation available through the support vectors and the kernel
covariance matrix. The balance between these two (obtained
through optimizing the control parameter η) results in better
performance.

5. CONCLUSION

In this paper, we have proposed the COSVM classification
method, which combines both the global information avail-
able through the estimated covariance matrix of the training
dataset and the local information available through the sup-
port vectors. COSVM improves upon the One-Class Sup-
port Vector Machine (OSVM) [6] method by emphasizing
low variance projectional directions of the training dataset.
The proposed method results in a convex optimization prob-
lem, which can be solved efficiently with existing numerical
methods. Our proposed method does not change the basic
formulation of OSVM and can be easily implemented with
the existing OSVM applications. Detailed comparative re-
sults against five other contemporary one-class classifiers on
several benchmark datasets show the superiority of COSVM.
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