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ABSTRACT

Multi-label classification has received increasing attention in
computational proteomics, especially in protein subcellular locali-
zation. Many existing multi-label protein predictors suffer from
over-prediction because they use a fixed decision threshold to de-
termine the number of labels to which a query protein should be
assigned. To address this problem, this paper proposes an adaptive
thresholding scheme for multi-label support vector machine (SVM)
classifiers. Specifically, each one-vs-rest SVM has an adaptive
threshold that is a fraction of the maximum score of the one-vs-rest
SVMs in the classifier. Therefore, the number of class labels of
the query protein depends on the confidence of the SVMs in the
classification. This scheme is integrated into our recently proposed
subcellular localization predictor that uses the frequency of occur-
rences of gene-ontology terms as feature vectors and one-vs-rest
SVMs as classifiers. Experimental results on two recent datasets
suggest that the scheme can effectively avoid both over-prediction
and under-prediction, resulting in performance significantly better
than other gene-ontology based subcellular localization predictors.

Index Terms— Multi-label classification; Protein subcellular
localization; Adaptive thresholding; Gene Ontology; Multi-label
SVM.

1. INTRODUCTION

In supervised learning, the problem of assigning more than one la-
bel to each data instance is known as multi-label classification. In
the past decades, multi-label classification has received significant
attention in a wide range of problem domains, such as text classifi-
cation [1], semantic annotation of images [2], and music categoriza-
tion [3].

The existing methods for multi-label classification can be
grouped into two main categories: (1) algorithm adaptation and
(2) problem transformation. Algorithm adaptation methods extend
single-label algorithms to solve multi-label classification problems.
Typical methods include multi-label C4.5 [4], multi-label decision
trees [5] and AdaBoost.MH [1]. Problem transformation methods
transform a multi-label learning problem into one or more single-
label classification problems [2] so that traditional single-label
classifiers can be applied without modification. Typical methods in-
clude label powerset (LP) [6], binary relevance (BR) [7], ensembles
of classifier chains (ECC) [8] and compressive sensing [9]. The LP
method reduces a multi-label task to a single-label task by treating
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each possible multi-label subset as a new class in the single-label
classification task. This method is simple, but is likely to generate
a large number of classes, many of which are associated with very
few examples. BR is a popular problem-transformation method. It
transforms a multi-label task into many binary classification tasks,
one for each label. Given a query instance, its predicted label(s)
are the union of the positive-class labels output by these binary
classifiers. BR is effective, but it neglects the correlation between
labels, which may carry useful information for multi-label classi-
fication. The classifier chain method is a variant of BR but it can
take the correlation between labels into account. Similar to BR, a
set of one-vs-rest binary classifiers are trained. But unlike BR, the
classifiers are linked in a chain and the feature vectors presented to
the i-th classifier in the chain are augmented with the binary values
representing the label(s) of the feature vectors up to the (i − 1)-th
class. Therefore, label dependence is preserved through the feature
space. Classification performance, however, depends on the chain
order. This order-dependency can be overcome by ensembles of
classifier chains [8]. The compressive sensing approach is motivated
by the fact that when the number of classes is large, the actual labels
are often sparse. In other words, a typical query instance will belong
to a few classes only, even though the total number of classes is
large. This approach exploits the sparsity of the output (label) space
by means of compressive sensing to obtain a more efficient output
coding scheme for large-scale multi-label learning problems.

Compared to algorithm adaptation methods, one advantage of
problem transformation methods is that any algorithm which is not
capable of dealing with multi-label classification problems can be
easily extended to deal with multi-label classification via transfor-
mation. It should be pointed out that the multi-label classification
methods are different from the multi-class classification methods,
such as error-correcting output coding methods [10], pairwise com-
parison methods [11], and so on. There is probably no multi-class
method that outperforms all others in all circumstances [12], so is
the same case for multi-label methods.

Several algorithms based on support vector machines (SVM)
[13] have been proposed to tackle multi-label classification problems.
In [14], a ranking-SVM approach that minimizes the margin and the
ranking loss [1] at the same time is proposed. In [15], three improve-
ments to enhance the BR method for SVM classifiers are presented.
The first improvement is to extend the original data set with some
additional features indicating the relationship between classes. The
second improvement is to remove negative training instances if they
are similar to the positive training instances. And the third improve-
ment is to remove very similar negative training instances that are
within a pre-defined distance from the decision boundary.
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In the past decades, multi-label classification methods have been
increasingly applied in bioinformatics, especially in protein subcel-
lular localization. Protein subcellular localization is a problem of
predicting which part(s) in a cell a protein resides. This informa-
tion is vitally important for understanding the functions of proteins
and for identifying drug targets [16]. This problem has been exten-
sively studied in previous decades and many computational meth-
ods [17–22] have been developed. More information about pro-
tein subcellular localization can be found in a comprehensive re-
view [23]. Recently, several multi-label predictors have been pro-
posed to deal with the prediction of multi-label proteins, such as
Virus-mPLoc [24], iLoc-Virus [25], KNN-SVM ensemble classifi-
er [26], and mGOASVM [27]. They all use the Gene Ontology
(GO)1 information as the features and apply different multi-label
classifiers to tackle the multi-label classification problem. Among
them, Virus-mPLoc and iLoc-Virus use algorithm adaptation meth-
ods, while KNN-SVM and mGOASVM use problem transformation
methods.

This paper proposes a multi-label SVM classifier for predicting
subcellular localization of multi-label proteins. The method extends
the BR methods with an adaptive thresholding decision scheme that
essentially converts the linear SVMs in the classifier into piecewise
linear SVMs, which effectively reduces the over-prediction instances
while having little influence on the correctly predicted ones. Results
on two recent benchmark datasets demonstrate that the proposed pre-
dictor can substantially outperform the state-of-the-art predictors.

2. FEATURE EXTRACTION

2.1. Retrieval of GO Terms

Given a query protein, the predictor described in this paper can use
either its protein accession number (AC) or its protein sequence as
input. For proteins with known ACs, their respective GO terms are
retrieved from the Gene Ontology Annotation (GOA) database2 us-
ing the ACs as the searching keys. For a protein without an AC,
its amino acid sequence is presented to BLAST [28] to find its ho-
mologs, whose ACs are then used as keys to search against the GOA
database.

While the GOA database allows us to associate the AC of a pro-
tein with a set of GO terms, for some novel proteins, neither their
ACs nor the ACs of their top homologs have any entries in the GOA
database; in other words, no GO terms can be retrieved by their ACs
or the ACs of their top homologs. In such case, the ACs of the ho-
mologous proteins, as returned from BLAST search, will be suc-
cessively used to search against the GOA database until a match is
found.

2.2. Construction of GO Vectors

Given a dataset, we used the procedure described in Section 2.1 to
retrieve the GO terms of all of its proteins. Then, we determined the
number of distinct GO terms corresponding to the dataset. Suppose
T distinct GO terms were found; these GO terms form a GO Eu-
clidean space with T dimensions. For each sequence in the dataset,
we constructed a GO vector by matching its GO terms to all of the T
GO terms. Unlike the conventional 1-0 value [24, 29] to determine
the elements of the GO vectors, we used Term-Frequency [30] to
construct the GO vectors.

The approach of Term-Frequency (TF) is similar to the 1-0 va-
lue approach in that a protein is represented by a point in a Euclidean

1http://www.geneontology.org
2http://www.ebi.ac.uk/GOA

space. However, unlike the 1-0 approach, it uses the number of oc-
currences of individual GO terms as the coordinates. Specifically,
the GO vector Pi of the i-th protein is defined as:

Pi = [bi,1, · · · , bi,j , · · · , bi,T ]T, bi,j =

{
fi,j , GO hit
0 , otherwise

(1)
where fi,j is the number of occurrences of the j-th GO term (term-
frequency) in the i-th protein sequence. The rationale is that the
term-frequencies may also contain important information for classi-
fication and therefore should not be quantized to either 0 or 1. Note
that bi,j’s are analogous to the term-frequencies commonly used in
document retrieval.

3. ADAPTIVE THRESHOLDING FOR SVM

3.1. Multi-label SVM Scoring

GO vectors are used for training the multi-label one-vs-rest SVMs.
Specifically, for an M -class problem (here M is the number of sub-
cellular locations), M independent binary SVMs are trained, one for
each class. Denote the GO vector created by using the true AC of
the i-th query protein as qi,0 and the GO vector created by using the
accession number of the k-th homolog as qi,k, k = 1, . . . , kmax,
where kmax is the number of homologs retrieved by BLAST with
the default parameter setting. Then, given the i-th query protein Qi,
the score of the m-th SVM is:

sm(Qi) =
∑

r∈Sm

αm,rym,rK(Pr,qi,k) + bm (2)

where Sm is the set of support vector indexes corresponding to the
m-th SVM, ym,r ∈ {−1,+1} are the class labels, αm,r are the
Lagrange multipliers, K(·, ·) is a kernel function; here, the linear
kernel is used. Note that Pr’s in Eq. 2 represents the GO training
vectors, which may include the GO vectors created by using the true
AC of the training sequences or their homologous ACs.

3.2. Adaptive Thresholding

To predict the subcellular locations of datasets containing both
single-label and multi-label proteins, an adaptive thresholding de-
cision scheme for multi-label SVM classifiers is proposed in this
paper. Unlike the single-label problem where each protein has one
predicted label only, a multi-label protein could have more than one
predicted labels. Thus, the predicted subcellular location(s) of the
i-th query protein are given by:
If ∃ sm(Qi) > 0,

M(Qi) =

M⋃
m=1

{{m : sm(Qi) > 1.0}∪{m : sm(Qi) ≥ f(smax(Qi))}}

(3)
otherwise,

M(Qi) =
M

arg max
m=1

sm(Qi). (4)

In Eq. 3, f(smax(Qi)) is a function of smax(Qi), where smax(Qi) =
maxM

m=1 sm(Qi). In this paper, we use a linear function, i.e.,
f(smax(Qi)) = θsmax(Qi), where θ ∈ [0.0, 1.0] is a parameter.
Because f(smax(Qi)) is linear, Eq. 3 and Eq. 4 turn the linear
SVMs into piecewise linear SVMs. Eq. 3 also suggests that the
predicted labels depend on smax(Qi), a function of the test instance
(or protein). This means that the threshold is adaptive to the test
protein. For ease of reference, we refer to the proposed predictor as
AT-SVM.
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Fig. 1. A 3-class example illustrating how the adaptive thresholding scheme changes the decision boundaries from linear to piecewise linear
and how the resulting SVMs assign label(s) to test points when θ changes from 0 to 1. In (a), the solid and dashed lines respectively represent
the decision boundaries and margins of individual SVMs. In (b)–(d), the input space is divided into three 1-label regions (green, blue and
red) and three 2-label regions (green ∩ blue, blue ∩ red, and red ∩ green).

To facilitate discussion, let’s define two terms: over-prediction
and under-prediction. Specifically, over (under) prediction means
that the number of predicted labels of a query protein is larger
(smaller) than the ground-truth. In this paper, both over- and under-
predictions are considered as incorrect predictions, which will be
reflected in the “actual accuracy” to be defined in Section 4.

Conventional methods use a fixed threshold to determine the
predicted classes. When the threshold is too small, the prediction
results are liable to over-prediction; on the other hand, when the
threshold is too large, the prediction results are susceptible to under-
prediction. To overcome this problem, the adaptive thresholding
scheme in the classifier uses the maximum score (smax(Qi)) among
the one-vs-rest SVMs in the classifier as a reference. In particular,
smax(Qi) in Eq. 3 adaptively normalizes the scores of all one-vs-rest
SVMs so that for SVMs to be considered as runner-ups, they need
to have a sufficiently large score relative to the winner. This strategy
effectively reduces the chance of over-prediction. The first condi-
tion in Eq. 3 (sm(Qi) > 1) aims to avoid under-prediction when
the winning SVM has very high confidence (i.e., smax(Qi) � 1)
but the runners-up still have enough confidence (sm(Qi) > 1) in
making a right decision.3 On the other hand, when the maximum
score is small (say 0 < smax(Qi) ≤ 1), θ in the second term
of Eq. 3 can strike a balance between over-prediction and under-
prediction. When all of the SVMs have very low confidence (say
smax(Qi) < 0), the classifier switches to single-label mode via
Eq. 4.

To further illustrate how this decision scheme works, an example
is shown in Fig. 1. Suppose there are 4 test data points (P1, . . . ,P4)
which are possibly distributed into 3 classes: {green, blue, red}.
The decision boundaries of individual SVMs and the 4 points are
shown in Fig. 1(a). Suppose sm(Pi) is the SVM score of Pi with
respect to class m, where i = {1, . . . , 4} and m ∈{green, blue,
red}. Fig. 1(a) suggests the following conditions:

sgreen(P1) > 1, sblue(P1) > 1, sred(P1) < 0;
0 < sgreen(P2) < 1, sblue(P2) > 1, sred(P2) < 0;
0 < sgreen(P3) < 1, 0 < sblue(P3) < 1, sred(P3) < 0;

sgreen(P4) < 0, sblue(P4) < 0, sred(P4) < 0.

Note that points whose scores lie between 0 and 1 are susceptible
to over-prediction because they are very close to the decision boun-
daries of the corresponding SVM. The decision scheme used in [27]
(i.e., θ = 0.0) leads to the decision boundaries shown in Fig. 1(b).
Based on these boundaries, P1, P2 and P3 will be assigned to class
green ∩ blue , and P4 will be assigned to the class with the highest
SVM score (using Eq. 4). If θ increases to 0.5, the results shown

3SVM scores larger than one means that the test proteins fall beyond the
margin of separation; therefore, the confidence is fairly high.
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Fig. 2. Performance of AT-SVM based on leave-one-out cross-
validation (LOOCV) varying with θ. θ = 0 represents the perfor-
mance of mGOASVM.

in Fig. 1(c) will be obtained. The assignments of P1, P3 and P4

remain unchanged but P2 will be changed from class green ∩ blue
to class blue. Similarly, when θ increases to 1.0 (Fig. 1(d)), then
the class of P3 will also be determined by the SVM with the high-
est score. This analysis suggests that when θ increases from 0 to 1,
the decision criterion becomes more stringent, which has the effect
of shrinking the 2-label regions in Fig. 1, thus reducing the over-
prediction. Provided that θ is not close to 1, this reduction in over-
prediction will not compromise the decisions made by the high scor-
ing SVMs.

4. EXPERIMENTS AND RESULTS

4.1. Datasets and Performance Measures

In this paper, a virus dataset [24, 25] and a plant dataset [31] were
used to evaluate the performance of the proposed predictor. The
virus and the plant datasets were created from Swiss-Prot 57.9 and
55.3, respectively. The virus dataset contains 207 viral proteins dis-
tributed in 6 locations. Of the 207 viral proteins, 165 belong to one
subcellular locations, 39 to two locations, 3 to three locations and
none to four or more locations. This means that about 20% of pro-
teins are located in more than one subcellular location. The plant
dataset contains 978 plant proteins distributed in 12 locations. Of
the 978 plant proteins, 904 belong to one subcellular locations, 71 to
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Table 1. Comparing AT-SVM with state-of-the-art multi-label predictors based on leave-one-out cross validation (LOOCV) using the virus
dataset. “–” means the corresponding references do not provide the overall actual accuracy. Host ER: Host endoplasmic reticulum.

Label Subcellular Location LOOCV Locative Accuracy
Virus-mPLoc [24] KNN-SVM [26] iLoc-Virus [25] mGOASVM [27] AT-SVM

1 Viral capsid 8/8 = 100.0% 8/8 = 100.0% 8/8 = 100.0% 8/8 = 100.0% 8/8 = 100.0%
2 Host cell membrane 19/33 = 57.6% 27/33 = 81.8% 25/33 = 75.8% 32/33 = 97.0% 32/33 = 97.0%
3 Host ER 13/20 = 65.0% 15/20 = 75.0% 15/20 = 75.0% 17/20 = 85.0% 17/20 = 85.0%
4 Host cytoplasm 52/87 = 59.8% 86/87 = 98.8% 64/87 = 73.6% 85/87 = 97.7% 83/87 = 95.4%
5 Host nucleus 51/84 = 60.7% 54/84 = 65.1% 70/84 = 83.3% 82/84 = 97.6% 82/84 = 97.6%
6 Secreted 9/20 = 45.0% 13/20 = 65.0% 15/20 = 75.0% 20/20 = 100.0% 20/20 = 100.0%

Overall Locative Accuracy 152/252 = 60.3% 203/252 = 80.7% 197/252 = 78.2% 244/252 = 96.8% 242/252 = 96.0%
Overall Actual Accuracy – – 155/207 =74.8% 184/207 = 88.9% 193/207 = 93.2%

two locations, 3 to three locations and none to four or more locations.
The sequence identity of both datasets was cut off at 25%.

To facilitate comparison, the locative accuracy and actual accu-
racy [27] were used to assess the prediction performance. Specifical-
ly, denote L(Pi) andM(Pi) as the true label set and the predicted
label set for the i-th protein Pi (i = 1, . . . , N ), respectively.4 Then,
the overall locative accuracy is:

Λloc =
1∑N

i=1 |L(Pi)|

N∑
i=1

|M(Pi) ∩ L(Pi)| (5)

where | · | means counting the number of elements in the set there-
in and ∩ represents the intersection of sets. And the overall actual
accuracy is:

Λact =
1

N

N∑
i=1

∆[M(Pi),L(Pi)] (6)

where

∆[M(Pi),L(Pi)] =

{
1 , ifM(Pi) = L(Pi)
0 , otherwise. (7)

Note that the actual accuracy is more objective and stricter than the
locative accuracy [27].

4.2. Performance of AT-SVM

Fig. 2 shows the performance of AT-SVM on the virus dataset and
the plant dataset with respect to the parameter θ based on leave-
one-out cross-validation. As can be seen, for the virus dataset, as θ
increases from 0.0 to 1.0, the overall actual accuracy increases first,
reaches the peak at θ = 0.3 (with an actual accuracy of 93.2%),
and then decreases. An analysis of the predicted labels {L(Pi); i =
1, . . . , N} suggests that the increases in actual accuracy is due to
the reduction in the number of over-prediction, i.e., the number of
cases where |M(Pi)| > |L(Pi)| has been reduced. When θ > 0.3,
the benefit of reducing the over-prediction diminishes because the
criterion in Eq. 3 becomes so stringent that some of the proteins
were under-predicted, i.e., the number of cases where |M(Pi)| <
|L(Pi)| increases. Note that the performance at θ = 0.0 is equiva-
lent to the performance of mGOASVM [27], and that the best actual
accuracy (93.2% when θ = 0.3) obtained by the proposed deci-
sion scheme is more than 4% (absolute) higher than mGOASVM
(88.9%).

For the plant dataset, when θ increases from 0.0 to 1.0, the over-
all actual accuracy increases from 87.4%, and then fluctuates around
88%. If we take the same θ as that for the virus dataset, i.e., θ = 0.3,
the performance of AT-SVM is 88.3%, which is still better than that
of mGOASVM at θ = 0.0.

4Here, N = 207 for the virus dataset and N = 978 for the plant dataset.

4.3. Comparing with State-of-the-Art Predictors

Table 1 compares the performance of AT-SVM against several state-
of-the-art multi-label predictors on the virus dataset. All the predic-
tors use the information of GO terms as features. From the perspec-
tive of classifiers, Virus-mPLoc [24] uses an ensemble OET-KNN
(optimized evidence-theoretic K nearest neighbor) classifier; iLoc-
Virus [25] uses a multi-label KNN classifier; KNN-SVM ensem-
ble classifier [26] uses an ensemble classifier combining KNN and
SVM; mGOASVM [27] uses a multi-label SVM classifier; and the
proposed AT-SVM uses a multi-label SVM classifier incorporated
with the proposed adaptive thresholding scheme.

As shown in Table 1, AT-SVM performs significantly better than
Virus-mPLoc and iLoc-Virus. Both the overall locative accuracy
and overall actual accuracy of AT-SVM are more than 17% (abso-
lute) higher than iLoc-Virus (96.0% vs 78.2% and 93.2% vs 74.8%,
respectively). AT-SVM also performs significantly better than the
KNN-SVM ensemble classifier in terms of overall locative accura-
cy (96.0% vs 80.7%). When comparing with mGOASVM, although
the locative accuracy of the proposed predictor is a bit lower than
that of the mGOASVM (96.0% vs 96.8%), the overall actual accu-
racy of the proposed predictor performs more than 4% higher than
mGOASVM, The results suggest that the improved multi-label SVM
classifier using the proposed adaptive thresholding decision scheme
performs better than the state-of-the-art classifiers. As for the indi-
vidual locative accuracy, except for the “viral capsid” for which all
the predictors reach 100%, the locative accuracies of the proposed
predictor are remarkably higher than those of Virus-mPLoc, iLoc-
Virus and KNN-SVM, and are comparable to mGOASVM.

5. CONCLUSIONS

This paper proposes an efficient multi-label SVM classifier, name-
ly AT-SVM, incorporated with an adaptive thresholding decision
scheme to predict subcellular localization of multi-label proteins.
Given a query protein, the GO information is extracted by using
either its accession number or its homologous accession number as
keys to search against GO annotation database, which is subsequent-
ly used to construct GO vectors. After scoring the GO vectors by the
multi-label SVM classifier, the predicted results are determined by
an adaptive thresholding decision scheme. Results on two bench-
mark datasets demonstrate that the adaptive threshold scheme can
be readily integrated into multi-label SVM classifiers.
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