
A CLASSIFICATION SCHEME FOR ‘HIGH-DIMENSIONAL-SMALL-SAMPLE-SIZE’ DATA
USING SODA AND RIDGE-SVM WITH MICROWAVE MEASUREMENT APPLICATIONS

Yinan Yu, Tomas McKelvey, Senior Member, IEEE, Sun-Yuan Kung, Fellow, IEEE

Chalmers University of Technology, Gothenburg, Sweden
Princeton University, NJ, USA

ABSTRACT
The generalization performance of SVM-type classifiers
severely suffers from the ‘curse of dimensionality’. For
some real world applications, the dimensionality of the mea-
surement is sometimes significantly larger compared to the
amount of training data samples available. In this paper, a
classification scheme is proposed and compared with existing
techniques for such scenarios. The proposed scheme includes
two parts: (i) feature selection and transformation based on
Fisher discriminant criteria and (ii) a hybrid classifier com-
bining Kernel Ridge Regression with Support Vector Machine
to predict the label of the data. The first part is named Suc-
cessively Orthogonal Discriminant Analysis (SODA), which
is applied after Fisher score based feature selection as a pre-
liminary processing for dimensionality reduction. At this
step, SODA maximizes the ratio of between-class-scatter and
within-class-scatter to obtain an orthogonal transformation
matrix which maps the features to a new low dimensional
feature space where the class separability is maximized.
The techniques are tested on high dimensional data from
a microwave measurements system and are compared with
existing techniques.

Index Terms— Feature extraction, SODA, Ridge-SVM,
Microwave measurements

1. INTRODUCTION

With the rapid development of data capture and storage tech-
nologies, the ‘curse of dimensionality’ [1] becomes an ex-
tremely common issue. Therefore, feature selection is criti-
cal in many pattern recognition and machine learning appli-
cations such as image processing, computer vision, mobile
computing [2], etc. In some challenging applications we are
facing the ‘high dimensionality and small-sample-size’ prob-
lem. For instance, in this work we use a microwave measure-
ment system with 10 microwave transceivers to measure the
scattering parameters of the object under study for the pur-
pose of detecting existence of anomalies within the object.
Vectorization of the raw feature space results in about 20,000
complex numbers. Due to the difficulties of obtaining inde-
pendent objects to measure, the amount of training data is
very limited in comparison to the size of the feature space.
Techniques such as Principal Component Analysis [3] and
Least Absolute Shrinkage and Selection Operator (LASSO)
[4] are commonly employed to overcome such issues. Fur-
thermore, when the sample size is small, the distribution of
the data is difficult to estimate and hence no optimal classifier
is guaranteed.

In this paper, we propose a classification scheme deal-
ing with ‘high dimensionality small-sample-size’ problems.
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The first part of the scheme is called feature selection and
extraction including (i) evaluating Fisher score for prelimi-
nary feature selection, (ii) Successively Orthogonal Discrim-
inant Analysis (SODA) technique, which finds an orthogonal
transformation that maps the feature vectors to a low di-
mensional space where the class separability is maximized
with respect to Fisher discriminant criteria. Existing tech-
niques for finding such transformations, e.g. Orthogonal
Linear Discriminant Analysis (OLDA) [5], heavily depend
on the number of classes which determines the rank of the
between-class-scatter matrix SB . In binary classification,
where rank(SB) = 1, this type of techniques do not apply.
These two steps (i) and (ii) are both based on maximizing
the class separability according to Fisher discriminant criteria
and are therefore highly compatible and complementary to
each other.

The second part of the proposed scheme is a Ridge-SVM
[6] based classifier where a support vector machine (SVM)
[7] based on Kernel Ridge Regression (KRR) [8] is applied
to the feature space produced by SODA for label prediction.
Ridge-SVM is a hybrid classifier which deals with unknown
data distribution [9]. For comparison, a LASSO regression is
employed instead of SODA. Under the sparsity assumption,
the feature space is shrunk to a dense subset where only the
relevant features are selected with respect to the l1 constraint.
Other classic feature reduction and transformation techniques
are also applied and tested empirically.

2. LASSO FEATURE SELECTION: EXPLORE THE
FEATURE SPARSITY

Theoretical analysis [10] shows that classifiers such as SVMs
become less efficient when there are many irrelevant features
but only a few training instances for each class. Therefore,
LASSO type regression is a reasonable choice for selecting
relevant features in such cases.

In some similar methods, e.g. FVM [11], the feature vec-
tors are selected using LASSO to produce a linear classifier.
Instead, we consider the LASSO regression as a preliminary
step to select a subset from the original feature space. Each
selected dimension is then weighted with the associated non-
zero l1 coefficient to obtain the new feature space.

Given training measurements, the data matrix X is con-
structed by placing all the data vectors as its columns:

X =
[
x+
1 ,x

+
2 · · ·x

+
N+
,x−1 ,x

−
2 · · ·x

−
N−

]
, (1)

where the + and − indicate two classes and the m dimen-
sional vectors x+ and x− are sampled from the two classes
respectively.

Under the assumption of sparsity, the feature subset se-
lection problem can be re-formulated as a l1 constraint opti-
mization:
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Fig. 1. The proposed classification scheme.

minimize
α

‖Y −XTα‖l2 + λ‖α‖l1. (2)

where Y is the label vector containing {0, 1} for all the
involved training samples. Given λ, this well studied op-
timization structure can be solved by convex optimization
techniques. The solution vector α of size m containing only
a few (m′) non-zero elements which is then used as a weight-
ing vector for the features. Namely, for a testing sample x,
we have:

xselected = {xj : xkI{αk 6= 0}, k = 1, ...,m, jk = 1, ...,m′}
xweighted = diag(αk1 , · · · , αk′m

)xselected

where I is the indicator function, coefficients αk1 ...αkm′ are
the nonzero elements of the vector α. Note that in future
discussions, the feature space is denoted by X and the feature
vectors x for convenience.

3. SUCCESSIVELY ORTHOGONAL DISCRIMINANT
ANALYSIS (SODA)

In this section, a new feature extraction technique called Suc-
cessively Orthogonal Discriminant Analysis (SODA) is de-
veloped. First, feature selection by evaluating Fisher score is
used to reduce the dimensionality, and then SODA is applied
to find an orthogonal matrix containing a set of orthogonal
vector wi’s, which provides a map x → x′ such that in the
new space consisting of vectors x′ = W Tx, the class sep-
arability is maximized. Figure 1 illustrate the sequence of
processing steps. The two steps are presented below.

3.1. Step 1: Fisher score feature selection

For computational reasons, a feature selection technique
based on Fisher score evaluation [12] is employed to prelimi-
narily reduce the dimensionality. For data x, the Fisher score
of feature j is defined as follows:

fsj(x) =
1

(σj)2

∑
k∈{+,−}

nk(µj
k − µ

j)2 (3)

where k denotes the class index and takes the value of + or−
and nk is number of samples in the corresponding class. The
scalars µj

k, σj
k are the mean value and variance of feature j

from class k while µj is the mean value for feature j of the
whole training set. Finally, (σj)2 is defined as:

(σj)2 =
∑

k∈{+,−}

nk(σj
k)2 (4)

After the Fisher score for each feature is computed, a pre-
defined number of features with largest scores are selected.
As a preliminary feature selection technique, it has some ad-
vantages such as: 1) computationally simple; 2) efficiently

reduces the feature space with discriminant information pre-
served with respect to Fisher criteria; and 3) compatible with
other ‘Fisher type’ techniques. However, this classic and
straightforward approach has some drawbacks including: 1)
no optimality is guaranteed due to its heuristic nature; 2) no
combinations of the features are taken into account and 3)
redundant features cannot be handled. This motivates us to
develop a second step to compensate for these drawbacks.

3.2. Step 2: SODA for feature transformation

To further enhance the discriminant ability after the feature
subset selection, we develop a new technique called Succes-
sively Orthogonal Discriminant Analysis (SODA). The at-
tempt of this approach is to construct a linear transformation
W T which takes the data points from the feature space X
(with dimension m′) to a new space X ′ (dimension k, k <
m′) where the class separability is maximized on the train-
ing samples. The separability is measured over the ‘between-
class scatter matrix’ SB and the ‘within-class scatter matrix’
SW , which are respectively defined as:

SW =
1

N+

N+∑
i=1

(x+
i − µ

+)(x+
i − µ

+)T

+
1

N−

N−∑
j=1

(x−j − µ
−)(x−j − µ

−)T

SB = (µ+ − µ−)(µ+ − µ−)T (5)

where µ+ and µ− are the mean vector estimated from the
corresponding class + and −. In LDA, we want to find a
vector w which maximizes the following Fisher score

wTSBw

wTSWw
. (6)

The vector which maximizes (6) is the generalized eigen-
vector corresponding to the largest generalized eigenvalue of
the problem SBw = SWwλ. In the case of a singular SW
the solution can be determined as the eigenvector of the Fisher
matrix F = SW

+SB , corresponding to the largest eigen-
value [13].

Instead of a one dimensional vector, we want to find a
transformation matrix W with k column vectors. However,
for a binary classification problem, the matrix SB has rank
one and therefore only one non-zero eigenvalue can be ob-
tained. Therefore, a new formulation and its solution are pro-
posed as follows.
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SODA formulation. The matrixW = [w1 · · ·wk] defines a
map x→ x′, whose columns satisfy:

maximize
wi

wT
i SBwi

wT
i SWwi

subject to wi ⊥ w1,...,i−1

wT
i wi = 1

wi ∈ Span(SW )

(7)

where Span(SW ) denotes the range space of matrix SW .
Algorithm SODA

- Let S(0)
W = SW

F (1) = (S
(0)
W )+SB

- For i = 1 : k
- Solve for F (i)wi = λiwi

where λi is the largest and only eigenvalue of F (i).
- LetD(i) = Im×m −wiw

T
i be the deflation matrix

S
(i)
W = D(i)S

(i−1)
W D(i)

F (i+1) = (S
(i)
W )+SB

- Form matrix: W =
[
w1 · · ·wk

]
- Transformation of the features: x′ = W Tx

Theorem. The columns of the matrix W obtained from Al-
gorithm SODA solves the optimization problem stated in (7).
Proof. The proof consists of two parts: 1)wi is in the column
space of (SW )(i), and 2) w1 ⊥ w2 · · · ⊥ wk.

1) It suffices to show that w1 ∈ Span(S
(1)
W ). It is obvious

that w1 ∈ Span((S
(1)
W )+). Let S(1)

W = U1ΣU1
T , we

have (S
(1)
W )+ = U1Σ

−1U1
T . Therefore, (S

(1)
W )+ and

S
(I)
W share the same column space and hence it follows

that w1 ∈ Span(S
(1)
W ).

2) For i = 1, the first components w1 is set to be equal to
normalized eigenvector associated with the largest (and
the only) eigenvalue of (S

(1)
W )+SB , which obviously

maximizes the Fisher score of step i = 1.
For the next stage, i.e. i = 2, the deflation operator
completely removes w1 component from S

(1)
W , forc-

ing (S
(1)
W )+SB to contain only components orthogo-

nal to w1. It follows that the optimal solution w2 for
the maximal Fisher score of step i = 2 must be or-
thogonal to w1. By induction, it eventually leads to
w1 ⊥ w2 · · · ⊥ wk. Thus, the proof is completed.

4. KERNEL RIDGE REGRESSION AND SVM

In the previous sections, the feature space has been shrunk
and transformed in order to enhance the class separability.
These feature selection and extraction techniques are consid-
ered as pre-processing steps to produce the input of the classi-
fier. In this section, a hybrid classifier based on support vector
machine (SVM) using kernel ridge regression (KRR) is pre-
sented as the final step in the classification scheme [14]. As
we know, in data driven classification techniques, the perfor-
mance of a classifier heavily depends on the distribution of the

data. When the distribution is not known in advance, it is dif-
ficult to choose a proper type of classifier which best solves
the problem. In particular, for the case when only training
data with a limited sample size is available, the distribution
of the data set cannot be easily estimated. This motivates us
to propose a unified hybrid classifier named Ridge-SVM. The
classifier is very versatile as it covers existing classifiers, in-
cluding KDA, KRR, and SVM, as special cases [9]. Given
a kernel function K, the formulation of KRR and SVM are
compared to make sense of the concept:
(1) KRR:

maximize
a

{
aTY − 1

2a
T [K + ρI]a

}
Subject to Σiai = 0

(8)

where Y contains the labels {0, 1}. Parameter ρ penalizes
the weak and vulnerable components in the spectral space to
avoid overfitting problem.
(2) SVM:

maximize
a

{
aTY − 1

2 a
TKa

}
Subject to Σiai = 0

0 ≤ αi ≤ C,where αi = aiYi

(9)

Parameter C controls the size of the participating compo-
nents. When C is sufficiently small, the SVM is expected
to be more robust. The parameters ρ and C are complemen-
tary to each other which also motivates the development of
the hybrid classifier. The Ridge-SVM can be then formulated
as follows:

maximize
a

{
aTY − 1

2a
T [K + ρI]a

}
Subject to Σiai = 0

Cmin ≤ αi ≤ Cmax,where αi = aiYi

(10)

and the discriminant function is:

f(x) = Σi=1αiK(xi,x) + b (11)

for some b ∈ R with the decision boundary f(x) = 0.

5. EXPERIMENTAL RESULTS AND DISCUSSION

The measured signals from the microwave system are the
complex scattering parameters [15] with a frequency range
from 100 MHz to 3.0 GHz. Each signal contains 401 fre-
quency points, and 55 different channels are involved corre-
sponding to the reflection and transmission channels implied
by the 10 element array antenna. By considering the real
and imaginary parts of the complex signal, we get a 44,110-
dimensional feature space. In this study, the main interest is
to use the measurements to classify an object into one of two
classes. Our experiment involves 27 samples class + and 45
class −. As usual, class + contains objects with an anomaly
which the classifier should detect at a low false alarm rate. To
assess the performance of the tested methods a leave-one-out
validation approach is applied. Figure 2 shows the distribu-
tion of the two first principal components calculated by PCA
for the available data. Clearly, a linear classifier based on the
first two principal components is not a viable alternative and
show why kernel based methods can be useful.

Two types of preliminary feature selections are used in
our experiments: LASSO and a Fisher-Score-based method.
In our study, the number of features for LASSO is set atm′ =
40. Figure 3 illustrates how the detection rate depends on the
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Feature Selection Feature Transformation # Features Classifier Detection Rate
LASSO (40 features) × 40 Ridge SVM (RBF Kernel) 73%
LASSO (40 features) Linear scaling 40 Ridge SVM (RBF Kernel) 88%
LASSO (40 features) SODA 10 Ridge SVM (RBF Kernel) 78%
LASSO (40 features) SODA 10 SVM (RBF Kernel) 72%

Fisher Score (400 features) × 400 LDA 74%
Fisher Score (400 features) PCA 10 Ridge SVM (RBF Kernel) 68%
Fisher Score (400 features) SODA 10 Ridge SVM (RBF Kernel) 92%

× × 44,110 SVM (RBF Kernel) 75%

Table 1. Comparison of rate of detection of class 1 with a constant false alarm rate of 20% for the different scenarios tested,
where for Ridge-SVM Cmin = −1, Cmax = 1 and ρ = 0.4. For SVM, Cmin = 0, Cmax = 1 and ρ = 0. For parameters
achieving better performance (for SVM and Ridge-SVM), see Table 2.
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Fig. 2. Two dimensional visualization of the first two princi-
pal components of the dataset calculated using PCA.

number of Fisher-score based features. Note that the rates
saturate for feature numbers over 400.

Table 1 illustrates our experimental results with various
feature types, feature numbers, feature transformations, and
classifiers. The numbers in the last column reflect the detec-
tion rates of class + at a constant false alarm rate of 20%
estimated as the empirical probabilities based on the leave-
one-out validation. Note that, reduction from 40 LASSO fea-
tures into 10 SODA outputs actually results in a performance
deterioration (from 88% down to 78%). On the other hand,
the combination of the Fisher-Score-based method and SODA
can yield very high detection rates. Using 400 Fisher-Score
based features as input to SODA and again using 10 as the
SODA’s output dimension, the performance can increase to
92%, far higher than the conventional PCA and LASSO ap-
proaches (68% and 88%, respectively). In summary, when
combined with Fisher-score based feature selection, SODA
can effectively reduce the dimensionality needed for classi-
fiers while still retaining very high performance. Such a good
combination may be due to the fact that they are both tied with
FDA.

Our study also suggests that Ridge-SVM is promising in
enhanced generalization ability for datasets with unknown
distribution [6, 9]. Based on the microwave dataset of class
+, the detection rates of SVM Ridge-SVM, with various
learning parameters Cmin, Cmax and ρ, are summarized in
Table 2. We can see that Ridge-SVM’s 95.2% clearly out-
put performs SVM’s 86.8% and 92.1% (with ρ = 0.4 and
ρ = 0.4, respectively).

Cmin Cmax Detection Rate
SVM 0 1 74.6%
with 0 10 86.8%
ρ = 0 0 100 67.9%
SVM 0 1 87.2%

with ρ = 0.4 0 10 92.6%
-0.1 0.1 91.2%
0.1 1 87.3%
-1 1 92.9%

Ridge-SVM -1 10 87.6%
with 1 10 91.4%

ρ = 0.4 -10 10 95.2%
-10 100 85.6%
10 100 89.0 %

-100 100 94.2 %

Table 2. In this experiment, the input vector of SVM or
Ridge-SVM classifiers comprises 10 SODA outputs reduced
from 200 Fisher-score based features. Shown here are detec-
tion rates of class + for different C, Cmin, and Cmax, again
with 20% false alarm rate. In our study, setting C = 10 ap-
pears to give the best SVM result. For Ridge-SVM, on the
other hand, setting (Cmin, Cmax) = (−10, 10) produces a
much higher rate than (−1, 1) or (−100, 100).
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Fig. 3. SODA comparison: different numbers of selected fea-
tures versus detection rate for a 20% false alarm rate.
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