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ABSTRACT

This paper presents a new method for bimodal nonnegative

matrix factorization (NMF). This method is well-suited to sit-

uations where two streams of data are concurrently analyzed

and are expected to be related by loosely common factors. It

allows for a soft co-factorization, which takes into account

the relationship that exists between the modalities being pro-

cessed, but returns different factors for distinct modalities.

There is no need that the data related with each modality live

in the same feature space; there is also no need that they have

the same dimensionality. The co-factorization is obtained via

a majorization-minimization (MM) algorithm. The behavior

of the method is illustrated on both synthetic and real-world

data. In particular, we show that exploiting the correlation be-

tween audio and video modalities in edited talk-show videos

improve speaker diarization results.

Index Terms— Nonnegative matrix factorization, co-

factorization, multimodality, speaker diarization

1. INTRODUCTION

This work is concerned with data analysis tasks where obser-

vations are available from two concurrent streams of infor-

mation (modalities) that exhibit some relationship, typically

a strong correlation, without necessarily being of the same

nature (for example, observations in different modalities do

not necessarily live in the same feature space). This is for in-

stance the case in the task of multimodal speaker diarization

[1, 2], that jointly exploits audio and video tracks to improve

speaker diarization results. Speaker diarization consists in

identifying homogeneous segments, according to the speaker

identity: the objective is to find “who spoke when”. In the

specific case of edited videos, where a human meaningfully

assembles audio and multiview video tracks, it is obvious

that both tracks are related (the director generally chooses to

show the current speaker). Classic speaker diarization meth-

ods generally rely on Gaussian mixture models (GMMs) and

variants of Bayesian Information Criterion [3, 4]. However,

it has been recently shown that both speaker diarization and
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onscreen person spotting tasks can be effectively performed

using nonnegative matrix factorization (NMF) [5], opening

the door to NMF-based multimodal speaker diarization.

Recent works have already exhibited some methods to

jointly factorize different streams of information, in situations

where each stream of information is naturally represented as

an array. For example, [6, 7] propose solutions to jointly fac-

torize data of different dimensionalities. Closer to our work,

[8] alternatively solves and initializes two NMF problems,

one per modality. Also [9] proposes a general framework

to solve an arbitrary number of related NMF problems. All

these methods have even been used to solve real-world prob-

lems [10, 11, 12], in which co-factorization is defined as a

joint factorization, with a shared factor matrix, of different

streams of information.

However, all these methods presuppose the existence of

common underlying factors, possibly noisy, shared by all

modalities. Therefore, they return common factors while fac-

torizing distinct modalities. The proposed method, on the

contrary, informs the factorization of each modality with the

factorization of the other, but resulting factorizations do not

include identical common factors; it is even possible to con-

trol how much each modality influences the other, or to use a

soft ℓ1-coupling. As such, our approach can be seen as an un-

supervised version of a multi-task learning problem [13]. Yet,

our approach offers some flexibility that is well-suited for our

practical application, consisting in softly co-factorizing audio

and video tracks of edited videos, for speaker diarization.

Section 2 describes our model and a majorization-

minimization (MM) algorithm for estimation. Section 3 is

devoted to the application: firstly, the behavior of the algo-

rithm is illustrated on synthetic data, then we discuss tuning

of the hyperparameters, and finally we apply the proposed al-

gorithm to a real-world speaker diarization setting.

2. MODEL AND OPTIMIZATION

We first describe the novel penalized NMF framework that

formalizes the soft co-factorization task, before an optimiza-

tion algorithm is exposed.
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2.1. General framework

Given a matrix V ∈ R
F×N
+ , the problem of NMF consists in

finding two matricesW ∈ R
F×K
+ and H ∈ R

K×N
+ such that

V ≃WH . N is the number of observations (vectors) and F
is the number of features describing each observation. Given

a measure of fitD, NMF can be expressed as the minimization

problem min D(V |WH), with respect to W and H , and

under the nonnegativity constraints W ≥ 0 and H ≥ 0.

Now, given two matrices V1 and V2, two measures of fit

D1 and D2, a penalization function P , and weighting hyper-

parameters β1, β2 and βj , we propose to formalize the soft

nonnegative matrix co-factorization (sNMcF) problem via the

following program:

min
W1,H1,W2,H2

β1D1(V1 |W1H1) + β2D2(V2 |W2H2)

+ βjP (W1, H1,W2, H2) ,

s.t. W1 ≥ 0, H1 ≥ 0, W2 ≥ 0, H2 ≥ 0. (1)

2.2. Proposed model

The proposed framework is very general (and stands for many

problems) and choices must be made for D1, D2 and P for

particular instantiations. Given the application-specifics of

Section 3, we opt for the generalized Kullback-Leibler (KL)

divergence DKL (x|y) = x log (x/y)− x+ y as the measure

of fit. The KL divergence is well-suited for multinomial dis-

tributions [14, 15], and hence for the histograms data used in

Section 3. Furthermore, we consider that V1 and V2 are re-

lated through H1 and H2. W1 and W2 act as a dictionary

of patterns characteristic of each modality, and the activation

matrices H1 and H2 are assumed to be “similar”. More pre-

cisely, we choose to penalize H1 −H2 by its ℓ1-norm. This

choice means that the differences between H1 and H2 are

sparse (i.e., often zero).

As such, a naive implementation of our soft co-NMF

would aim at the following:

min
W1,H1,W2,H2

C (W1, H1,W2,H2) = β1DKL(V1 |W1H1)

+ β2DKL(V2 |W2H2) + βj ‖H1 −H2‖1 ,

s.t. W1 ≥ 0, H1 ≥ 0, W2 ≥ 0, H2 ≥ 0. (2)

However, this straight implementation is not a viable one, for

the following reasons.

1. Because of the scale ambiguity between the dictionar-

ies and the activation matrices, the minimization of the

cost function leads to degenerate solutions.1

2. H1 and H2 have no reason to have similar scales; they

are simply expected to have similar shapes and should

therefore be rescaled prior to comparison.

1For any 0 < α < 1, C (W1/α, αH1,W2/α, αH2) is always lower

than C (W1,H1,W2, H2).

3. It is not directly possible to handle situations where

H1 ∈ R
K1×N and H2 ∈ R

K2×N with K1 6= K2.

The situation where K1 6= K2 is readily handled by ig-

noring the penalty term for rows of H1 and H2 that are

unrelated. Thus, without loss of generality, we will use

K1 = K2 = K in the following. The two other difficul-

ties are solved as follows. First, we introduce the diago-

nal matrices Λ1,Λ2 ∈ R
K×K with k-th diagonal coefficient

λ1,k =
∑

f w1,fk, λ2,k =
∑

f w2,fk and the diagonal ma-

trix S ∈ R
K×K
+ with k-th diagonal coefficient sk. Then, we

reformulate the program as:

min
W1,H1,W2,H2,S

C (W1, H1,W2,H2) = β1DKL(V1 |W1H1)

+ β2DKL(V2 |W2H2) + βj ‖Λ1H1 − SΛ2H2‖1 ,

s.t. W1 ≥ 0, H1 ≥ 0, W2 ≥ 0, H2 ≥ 0. (3)

With these changes our approach becomes well conditioned:

Λ1 and Λ2 prevent any cost improvement simply related with

the scale, and S scales H2 so that it can be compared to H1.

S can be obtained in closed form given iterates of H1 and H2

and does not incur extra difficulties.

2.3. Optimization algorithm

Optimization of function (3) is not straightforward and we re-

sort to a block-coordinate MM algorithm [16, 17] that updates

H1, H2, W1 and W2 sequentially. The MM framework relies

on the construction of an easier-to-minimize upper-bound of

the original cost function that is tight at the current parameter

value. The upper bound is minimized in lieu of the original

cost function, which is in turn decreased at each iteration.

For the sake of conciseness, we here report the update of

only one of the activation matrices, H1, which, to the best

of our knowledge, is a novel problem. The update of H2 is

essentially identical, while the updates ofW1 andW2 amount

to special cases of the literature on NMF, see, e.g., [5]. Full

derivations as well as MATLAB codes are given online.2

Let us first introduce the following notation:

Ψ1 = H̃1 · ∗(W
T
1 (V · /(W1H̃1))) is a matrix, with co-

efficients ψ1,kn. The symbols ·∗ and ·/ refer to element-wise

multiplication and division, respectively, and H̃1 refers to the

current value of H1. Thanks to the convexity of DKL (V | .),
and using Jensen’s inequality, we can obtain the following

majoring function of C(W1, H1,W2, H2):

G(H1|H̃1) =
K
∑

k=1

N
∑

n=1

(−ψ1,kn log h1,kn + λ1,kh1,kn)

+ βj

K
∑

k=1

N
∑

n=1

|λ1,kh1,kn − skλ2,kh2,kn|+ cst. (4)

2http://perso.telecom-paristech.fr/~seichepi/icassp2013
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For h1,kn 6= 0, the derivative of G w.r.t to h1,kn writes

∇h1,kn
G(H1|H̃1) =

−ψ1,kn

h1,kn
+ λ1,k

+ βjλ1,ksign (λ1,kh1,kn − skλ2,kh2,kn) . (5)

The gradient is cancelled out by a unique solution h̄1,kn, cor-

responding to the minimum of the auxiliary function, and

therefore giving the update rule for h1,kn. The resolution in-

volves the critical point hc =
skλ2,kh2,kn

λ1,k
, and we must take

several possibilities into account, depending on the behavior

of ∇G on the left and right of hc. Simple algebra leads to

{

h̄1,kn = hc, if ∇G(h−c ) ≤ 0 & ∇G(h+c ) ≥ 0

h̄1,kn =
ψ1,kn

λ1,k(1+βj((∇G(h+
c )<0)−(∇G(h−

c )>0))
, otherwise.

(6)

where ∇G(hc) is a shortand for ∇h1,kn
G evaluated at

h1,kn = hc, and h−c and h+c denote left and right neighbor-

hoods of hc, respectively. The notations (∇G(h+c ) < 0) and

(∇G(h−c ) > 0) denote the value 0 or 1 resulting from the

boolean test.

3. APPLICATIONS

In this section, our proposed algorithm is first tested on syn-

thetic data, then applied to the joint audio/video diarization

task.

3.1. Behavior on synthetic data

We first verify on a toy example that the algorithm behaves

as expected. This also gives an illustration of the possibili-

ties of the proposed soft co-factorization. Experiments have

been carried out as follows. Firstly, we generate H1 and

H2 ∈ R
2×240 using patterns of zeros and ones. Then, we

generateW1 andW2 ∈ R
20×2 with uniform noise on [1, 11].

We finally generate V1 =W1H1 and V2 =W2H2. W1 and

W2 are here fixed, and the algorithm is initialized with ran-

dom values for H1 and H2. Figure 1 shows that when the

coupling parameter βj is increased, the algorithm returns ac-

tivation patterns for the first modality that move away from

its ground truth and become closer to the ground truth of the

second modality, and conversely. It has also been verified that

the activation patterns associated with the modality with the

highest weight (for instance, β1) are less distorted than the

activation patterns associated with the modality with the low-

est weight (for instance, β2). These are desirable behaviors,

that allow us to obtain activation patterns for one modality,

arbitrarily influenced by the other modality.
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Fig. 1. Influence of the coupling: left and right columns corre-

spond to the first and the second modality, respectively. Con-

tinuous lines are the activation patterns returned by the algo-

rithm, while dashed lines correspond to the ground truth. For

simplicity, only one row per modality is displayed.

3.2. Hyperparameters

The cost function (3) comprises three hyperparameters. How-

ever, the parametrization as presented until now is redundant

and we can choose β1 = 1 without loss of generality. Then,

β2 simply represents the weight given to the second modal-

ity, controls the respective importance of the modalities, and

in particular decide whether one modality is more important

than the other. However, DKL is not a scale-invariant mea-

sure. Therefore, if (for example) ‖V1‖1 = 2 ‖V2‖1 we must

correct the weighting parameters and (here) double β2 to bal-

ance the scale effect. Besides, it is difficult to decide a priori

whether two modalities will be loosely or highly related, and

βj should typically be estimated by cross-validation or from

development data.
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βj 0.01 0.1 1

Mean score 22.2 20.3 42.2

Table 1. Mean results for different values of βj (training set).

3.3. Experimental setup for speaker diarization

In edited videos, current speakers are generally onscreen.

Identifying onscreen persons therefore provides relevant

information for the audio speaker diarization task. While

factorizing audio features Vaudio with NMF, each row of

Haudio will match a speaker and activation patterns will

represent speech segments. For video features Vvideo, each

row of Hvideo will match one person and activation patterns

will represent onscreen appearances. Therefore, Haudio and

Hvideo will clearly be related, but not equal. We then simply

want to take Hvideo into account to help in situations where

the speaker diarization task is difficult, and our algorithm is

precisely suited to this task.

We use the 33 first videos of Canal9 political debates

database [18]. This dataset is made of several broadcasts,

featuring a moderator and 2 to 4 guests debating a political

question. Diarization is tested on one 8-minute long video

segment per video.3 All scores are computed using the

NIST scoring script for speaker diarization evaluation [19].

The evaluation metric is hence the Diarization Error Rate

(DER), which is roughly a measure of the fraction of speaker

time that is not attributed to the right speaker. Matrices of

features Vaudio and Vvideo are built according to [5]. Each

column of Vvideo corresponds to an histogram of visual

words, while columns of Vaudio are made up of histograms

of audio states, inferred from short-term Mel Frequency

Cepstral Coefficients. Only slight modifications have been

made: histograms are built using 50 states per speaker, and

an aggregation window of 2 seconds is used.

We define V1 = Vvideo, V2 = Vaudio, and set without

loss of generality β1 = 1, see Section 3.2. We set β2 = 5,

which gives priority to the audio factorization. Finally, the

value βj = 0.1 is chosen after testing different values on 10

development videos, see Table 1. These videos have been

randomly selected4 among the 33 considered, and are not

used for test. Since the optimized cost function is not convex,

results may vary over initializations. Hence the tests have

been made using 15 random initializations for each video,

which is sufficient in practice to have representative results;

only results associated with the lowest end cost function

value are considered; the score values over all videos are then

averaged. Finally, denoting by Q the number of speakers –

assumed known, a sensible assumption for TV contents, that

3Starting at 3 minutes and 30 seconds to avoid opening credits.
4Videos 06-11-15, 06-06-07, 05-11-23, 05-10-12, 06-04-19, 06-02-08,

06-10-18, 06-11-29, 05-12-07 and 06-10-04.

Method Audio Stack Stack sNMcF

only K = Q K = Q+ 1

Mean score 21.4 25.1 18.9 16.8

Table 2. Mean results of the different methods (test set).

Lower values indicate better performance.

typically provide integrated subtitles or teletext – Vaudio is

factorized with Kaudio = Q, while Vvideo is factorized with

Kvideo = Q + 1. The latter accounts for one component per

speaker plus a component for wide shots, see [5].

3.4. Results

Table 2 reports the speaker diarization scores (using NIST

reference scoring script) obtained using 1) NMF of the au-

dio track only, 2) a naive method that factorizes the matrix

Vstacked form of the vertical concatenation of β1Vvideo and

β2Vaudio, using either K = Q or K = Q+1, and 3) our soft

nonnegative matrix co-factorization (sNMcF) method.

The results are as follows: it is better to factorize audio

over K + 1 channels rather than restraining the video factor-

ization to K channels if simply stacking audio and video fea-

tures. Both stacked features and soft co-factorization yield

better results than the analysis of only the audio track. Fi-

nally, soft co-factorization yields an improvement over other

methods.

4. CONCLUSION

In this paper, we presented a new soft nonnegative matrix

co-factorization (sNMcF) paradigm for heterogeneous but re-

lated modalities. Our paradigm relax the assumption that the

modalities are explained by an identical common underlying

factor, and gives full control over the expected correlation be-

tween the factorizations. We illustrated our approach on a

real-world speaker diarization problem, and observed an im-

provement over reference methods. These results have been

obtained with a limited use of prior knowledge, both to con-

struct the cost function and initialize the proposed MM algo-

rithm.

In future variants, we could easily modify the optimized

cost function to embed additional structure such as smooth-

ness. Initializations based on Support Vector Machines pre-

computed factorizations could spare oneself the trouble of

knowing the number of speakers beforehand, and help the

selection of best results. Hence nonnegative matrix soft co-

factorization holds the potential for further improved results.
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