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ABSTRACT 

 
Speaker clustering has been widely adopted for clustering 
the speech data based on acoustic characteristics so that an 
unsupervised speaker normalization and speaker adaptive 
training can be applied for a better speech recognition 
performance. In this study, we present a vector space 
speaker clustering approach with long-term feature analysis. 
The supervector based on the GMM mean vectors is 
adopted to represent the characteristics of speakers. To 
achieve a robust representation, total variability subspace 
modeling, which has been successfully applied in speaker 
recognition for compensating channel and session 
variability over the GMM mean supervector, is used for 
speaker clustering. We apply a long-term feature analysis 
strategy to average short-time spectral features over a period 
of time to capture the speaker traits that are manifested over 
a speech segment longer than a spectral frame. Experiments 
conducted on lecture style speech show that this speaker 
clustering approach offers a better speech recognition 
performance. 

Index Terms— Speaker clustering, speech recognition, 
long-term feature, total variability 
 

1. INTRODUCTION 
 
Automatic speech recognition (ASR) has been widely 
applied in the automatic transcription of voice recordings 
while the acoustic mismatches including speaker variation 
and noises still constitute one of the major challenges to a 
reliable speech recognition system. To achieve the robust 
speech recognition, many techniques have been proposed to 
address the acoustic mismatch caused by the speaker 
variation [1]–[5] and speaker clustering is one of the 
effective approaches. Through the speaker clustering 
process, the voice recordings are segmented and clustered 
into homogeneous segments based on the speaker or other 
acoustic characteristics. Then the speaker clustering results 
can be used for the speaker-based cepstral mean 
normalization (CMN) [3, 4] and speaker adaptive training 
(SAT) [5] in the acoustic modeling. As a result, a better 
ASR performance is expected to be achieved. 

Recently, Tsai et al. [6] presented an automatic speaker 
clustering algorithm using a voice characteristic reference 
space and maximum purity estimation, with the aim of 
maximizing the similarities between utterances within 
clusters. Tang et al. [7] applied a complete treatment for a 
partially supervised speaker clustering to assist the 
unsupervised speaker clustering process. They proposed to 
perform the speaker clustering based on the cosine distance 
metric and linear spherical discriminant analysis. In addition, 
speaker clustering is an essential part of speaker diarization. 
Nwe et al. [8] designed a strategy for the speaker diarization 
system considering speaker clustering. They used a 
consensus based cluster purification method that removed 
impure speaker segments in speaker clusters before the 
speaker modeling was conducted in the cluster purification 
process. Ishiguro et al. [9] formulated the speaker clustering 
problem as the clustering of sequential audio features 
generated by an unknown number of latent mixture 
components for efficient speaker identification. They 
employed a probabilistic model assuming time sensitive 
speaker mixtures at every time frame.  

In this study, we study the speaker clustering techniques 
and apply the unsupervised speaker clustering for 
improving speech recognition. Figure 1 illustrates the 
process of the proposed speaker clustering. A novel vector 
space representation is proposed to capture the speaker 
discriminative characteristics based on the long-term feature 
analysis and total variability subspace modeling. 
Experiments were conducted on the lecture speech, TED1 
which provides streaming speech to spread ideas on the 
topics of Technology, Entertainment, and Design. The 
lecture speech is commonly with applause, laughter, music, 
etc. In a TED talk, it is not always monologue. There might 
be interviews or conversations in a talk. We apply the vector 
space strategy to represent spoken utterances and the 
speaker clustering is conducted to cluster the spoken 
utterances into a number of speaker clusters in each talk. 
For a better acoustic modeling, even in a talk involving only 
one speaker, the speaker clustering technique can also be 
applied to cluster the speech data based on different acoustic 
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environments such as different speaking types, noise levels, 
etc. In the reminder of the paper, we present the proposed 
speaker clustering techniques for lecture speech recognition 
in Section 2. Section 3 shows experiments in detail. We 
conclude with a summary of findings in Section 4. 
 

2. VECTOR SPACE REPRESENTATION FOR 
SPEAKER CLUSTERING 

 
2.1. Long-Term Feature Analysis 
 
Feature extraction is an important step to estimate a 
numerical representation from speech samples and to 
characterize speakers. Mel-frequency cepstral coefficient 
(MFCC) is an effective speech feature analysis [10]. Speech 
signal is conventionally represented as a sequence of frames 
for short-term analysis and these frames are small enough to 
ensure that frequency characteristics of the magnitude 
spectrum are relatively stable. However, speech timbre and 
prosody are manifested over a speech segment of multiple 
short-term spectrums through phonetic units, such as vowels 
and consonants. To capture the spectral statistics over a long 
period of time, we proposed the speaker discriminative 
feature extraction using long-term feature (LTF) analysis 
[11]. An overlapping long-term window was applied on 
short-term features to average G  short-term MFCC frames 
into N  LTF frames with ( ) / 1N G L Z   . L  denotes 

the size of the long-term window and Z  is the step of the 
long-term window shift. The advantage of the LTF features 
is that they can simultaneously take account of short-term 
frequency characteristics and long-term resolution at the 
same time. LTF features with the mean of every four frames 
of MFCC features ( 4, 2)L Z   is used for vector 

representation of speaker clustering and denoted as LTF-4 
in this study. 
 
2.2. Total Variability for Vector Representation 
 
The vector space representation has been widely applied in 
the speaker recognition for the speaker modeling with 
Gaussian mixture model (GMM) which is trained by using 
spectral features of the spoken utterances of a speaker. A 
GMM supervector shows an effective way to represent the 
speaker characteristics in the spoken utterance. The GMM 
mean supervector x  is obtained by stacking the mean 

vectors of all the Gaussian components 

1 2, , ...,x u u u
TT T T

M     , where um  is the mean vector of the 

m-th Gaussian component. To solve the data sparseness 
problem, maximum a posteriori (MAP) estimation is 
normally used to adapt the speaker model from a universal 
background model (UBM) [12]. 

In real-world application, speech is recorded with 
different types of channels, sessions, and speakers. To 
compensate channel variability over GMM mean 
supervectors, a total variability space modeling has been 
proposed to represent both the speaker and channel 
variability simultaneously [13], in which the speaker and 
channel dependent GMM mean supervector s  is given by 

 ,s x Tvubm   

while xubm  denotes the supervector of the concatenation of 

the UBM mean vectors, T  is a rectangular low-rank matrix 
representing R bases spanning subspace with the important 
variability in the GMM mean supervector space, and v  is a 
normally distributed random vector of size R that is learned 
from samples. The weighing vector v  has been named i-
vector which provides an elegant way to project the high 
dimensional vector space to a low dimensional vector space 
while retaining most of the speaker relevant information. 
With i-vectors, we can represent speaker dependent 
information in a low-dimensional space to suppress channel 
and session variability using popular statistical techniques. 
The i-vector representation is also able to capture the 
speaker characteristics with very short utterances and isolate 
the information of the target speaker from other unwanted 
variability with session compensation [14]. These 
characteristics are very suitable for vector representation in 
the speaker clustering. 
 
2.3. Density-based Speaker Clustering 
 
The speaker clustering is the spoken utterance assignments 
into similar speaker groups. In this study, we adopt density-
based measurement for the speaker clustering in which each 
spoken utterance is regarded as an object represented by a 
vector. The distribution of these vectors can be viewed as a 
kind of density measure. For each object in a cluster, the 
neighborhood of a given radius   has to contain at least a 
minimum number, MinPts, of objects. The density-based 
clustering has two main properties, density-reachable and 
density-connected [15]. We select a vector and measure its 
density according to the number of vetors (MinPts) in the 
radius distance   and define the radius distance based on 
experiments as 
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Fig. 1.  The process of speaker clustering using vector 
representation with long-term feature for speech recognition.
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where avgd  and mind  denote the average and minimum 

distances between vectors, respectively. MinPts is set as 6 in 
the experiments. The benefit of density-based clustering is 
that it is robust to outlier or noise detection. We can 
discover clusters of arbitrary shape. The density-based 
clustering does not need to pre-define the number of clusters. 
Since vector based representations show strong directional 
scattering patterns [7], we measure the similarity ( , )sim x y  

between two vectors x  and y  using the cosine distance,  

 1
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to construct the speaker clusters. Among ( , )sim x y , a value 

close to 1 means that two vectors are similar, whereas a 
value near 0 denotes two vectors are dissimilar. 
 
2.4. Subspace Transformation and Normalization 
 
The techniques of principal component analysis (PCA) and 
linear discriminant analysis (LDA) are commonly applied to 
reduce the dimension and collect discriminative information 
by projecting the data onto the pairwise linear discriminants 
[16]. In addition, we apply the within-class covariance 
normalization (WCCN) [17] to normalize speaker and 
channel effect in i-vector space to find the transformed 
vector v̂ B vT . The transform matrix B  is derived from 

the Cholesky decomposition of W BBT


, where W


 is the 
within-speaker covariance matrix estimated by 


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where S means the number of speakers that each has the 
number of sN  i-vectors in the training dataset. After the 

subspace transformation of LDA and PCA on GMM mean 
supervectors and WCCN on i-vectors, we further apply the 
length normalization to deal with the non-Gaussian behavior 
of vectors so that normalized vectors can better fit to the 
Gaussian assumptions in modeling. The vector 
representations are normalized to the unit length by 

capturing their directions as ˆ ˆ/ /T T v B v B v v v . 

 
3. EXPERIMENTS 

 
3.1. Experimental Framework  
 
We collected 760 talks from online TED website as the 
training data. Speech segmentation and word alignment of 
original talks were conducted by using SailAlign in which 
HTK was used as the recognizer [18, 19]. We removed non-

speech data, rectified for the offset of subtitles to their 
acoustic equivalent, and spoken utterances were specified 
by the segments between pauses. The collected talks 
consisted of about 204 hour audio before the alignment 
procedure. We tested 8 TED talks with 818 utterances for 
the speech recognition evaluation. The Kaldi toolkit [20] 
was adopted for the ASR experiments. Based on the speaker 
clustering, the speaker-based CMN and SAT were applied 
to compensate the channel and speaker variations. The 
acoustic model is attributed to both phonetic variation and 
variation among speakers of the training population and 
these two variation sources are decoupled. SAT was used to 
jointly annihilate the inter-speaker variation and estimate 
the HMM parameters of speaker independent acoustic 
models [5]. HMM models were with 4,000 tied states and 
120,000 Gaussian mixture components. We extended 39 
phones of CMU pronunciation dictionary to 336 
monophones based on accent and position information. The 
trigram language model was trained on the TED text 
transcript. The speech decoding process was based on the 
weighted finite state transducers (WFST) while we used the 
OpenFST tools [21]. 
 
3.2. Evaluation Metrics 
 
We report the results of speaker clustering based on the 
clustering accuracy defined by 


1

1
clustering accuracy [ ] 100% ,

N

n n
n

c l
N 

    

where N is the number of spoken utterances, nl  denotes the 

true label of the testing utterance n, nc  means the 

recognized cluster label which is output of the speaker 
clustering. The indication function [.]  gives 1 if the 

argument is true and 0 otherwise [7]. The speech 
recognition performance is evaluated in terms of the word-
error-rate (WER), 

 WER 100% ,
ins del sub

num

 
   

considering errors of insertion (ins), deletion (del), and 
substitution (sub). num denotes the number of words in the 
testing utterances [22]. 
 
3.3. Evaluation of Speaker Clustering 
 
First, we compare the conventional MFCC and the proposed 
long-term feature analysis (LTF) using the GMM-SVM-
NAP speaker recognition system on the NIST Speaker 
Recognition Evaluation (SRE) 2008 corpus with evaluation 
metrics of equal error rate (EER) and minimum detection 
cost function (DCF) [11] in Table 1. Each frame of the 
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speech data is represented by a 36-dimensional feature 
vector, consisting of 12 MFCC, together with their deltas 
and double-deltas. The proposed LTF-4 shows a good 
speaker discrimination and outperforms the conventional 
MFCC in speaker recognition. The speaker discriminative 
long-term features were used for speaker clustering. In the 
rest of experiments we focused on the proposed vector 
representation consisted of LTF-4, i-vector with WCCN and 
the unsupervised density-based speaker clustering. Note that 
MFCC was still used for speech recognition. 

Table 2 shows evaluations of the density-based speaker 
clustering using various vector representations. A speaker 
independent UBM with 64 Gaussians was used for 
generating GMM mean supervectors. We applied the NIST 
SRE 2004, 2005, 2006 [11] telephone data, NIST SRE 2005, 
2006 microphone data, and Switchboard II data to estimate 
the total variability matrix T  in Eq. (1). The matrices of 
PCA, LDA and WCCN were estimated using the NIST SRE 
2004, 2005, 2006 telephone data and NIST SRE 2005, 2006 
microphone data. To evaluate the performance of speaker 
clustering, 30 independent trials were conducted, each of 
which involved a random selection of two TED talks. There 
were 84 spoken utterances in a talk on average. The average 
duration was 9.52 seconds per utterance. In Table 2, the 
speaker clustering based on the proposed vector 
representation provides a better performance than GMM 
mean supervectors and the projected vectors based on PCA 
and LDA. In the experiments, the dimensions of our vector 
representation, GMM supervectors with PCA and LDA 
were all set to 200. We also compared the K-means and 
hierarchical clustering techniques [7] with the density-based 
speaker clustering based on our vector representation. The 
density-based clustering gave the best performance. 
 
3.3. ASR Evaluation on TED Talks 
 
Table 3 shows the ASR results with two baselines: One is 
the speaker independent baseline, and the other is the 
speaker dependent baseline with an assumption of only one 
speaker in a talk. Because speaker information is effective 

for the speaker-based CMN and SAT, the speaker 
dependent baseline gives a better performance than the 
speaker independent baseline with both maximum 
likelihood (ML) and SAT. The WERs of the speaker 
dependent baseline with ML and SAT training were 23.23% 
and 21.59%, respectively. In addition, by assuming one or 
two speakers in a talk and applying the unsupervised 
speaker clustering, we evaluated different vector 
representations based on GMM mean supervector and the 
proposed vector representation. Compared with the speaker 
dependent baseline, the proposed unsupervised speaker 
clustering methods provided further improvements. 

Table 4 summarizes the step-by-step WER reductions 
with the proposed speaker clustering for speaker-based 
CMN and SAT, and discriminative MMI training [23]. 
WER reductions of 1.95% and 8.24% were achieved for 
speaker-based CMN and SAT using the proposed 
unsupervised speaker clustering for TED lecture speech 
recognition. We found that the proposed method offered 
more than 10% WER reduction on average. 
 

4. CONCLUSION 
 
In summary, we have presented the advantages of using the 
vector space representation in speaker clustering for the 
lecture speech recognition. On the one hand, using the total 
variability subspace modeling with speaker discriminative 
long-term feature achieves a low-dimensional representation 
to suppress channel and session variability and contributes 
to a better speaker clustering performance than the original 
GMM mean supervectors. On the other hand, the density-
based unsupervised speaker clustering is used for speaker-
based CMN and SAT training bringing more accurate 
speech recognition than the conventional speaker dependent 
baseline. WER reductions of 1.95% and 8.24% have been 
achieved for speaker-based CMN and SAT using the 
proposed unsupervised speaker clustering for TED lecture 
speech recognition. 

Table 1.  Comparison of LTF and MFCC on NIST SRE-2008

Feature 
Male Female All 

EER 100xDCF EER 100xDCF EER 100xDCF

MFCC 3.11% 1.18 3.45% 1.43 3.34% 1.38 
LTF-4 3.14% 1.13 2.84% 1.43 2.96% 1.33 

 
 

Table 2.  Comparison of vector representations with long-term 
feature analysis and density-based speaker clustering 

Vector Representation Clustering Accuracy

GMM mean supervector  79.05% 
GMM mean supervector (PCA) 72.68% 
GMM mean supervector (LDA) 81.55% 
Our vector representation 88.75% 
Our vector representation (K-means clustering) 87.20% 
Our vector representation (hierarchical clustering) 71.99% 

 

Table 3.  Speech recognition evaluation (in WER) using the 
unsupervised speaker clustering for ML and SAT training 

Speaker Clustering \ Acoustic Training ML SAT 
Speaker independent 23.53% 22.76% 
Speaker dependent 23.23% 21.59% 

GMM mean supervector  23.31% 21.45% 
GMM mean supervector (PCA) 23.14% 21.56% 
GMM mean supervector (LDA) 23.26% 21.48% 
Our vector representation 23.07% 21.17% 

 
 

Table 4.  Improvements by adding different techniques based 
on the proposed unsupervised speaker clustering for ASR 

Systems WER Reduction 

Speaker independent ML 23.53% - 
+ Speaker-based CMN 23.07% 1.95% 
+ SAT 21.17% 8.24% 
+ MMI 19.91% 6.33% 
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