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ABSTRACT

Intelligent transport systems (ITS) require data with high

spatial and temporal resolution for applications such as

modeling, traffic management, prediction and route guidance.

However, field data is usually quite sparse. This problem of

missing data severely limits the effectiveness of ITS. Missing

values are usually imputed by either using historical data of

the road or current information from neighboring links. In

most scenarios, information from some or all of neighboring

links might not be available. Furthermore, historical

data may also be incomplete. To overcome these issues,

we propose methods which can construct low-dimensional

representation of large and diverse networks, in presence

of missing historical and neighboring data. We use these

low-dimensional models to reconstruct data profiles for road

segments, and impute missing values. To this end we use

Fixed Point Continuation with Approximate SVD (FPCA)

and Canonical Polyadic (CP) decomposition for incomplete

tensors to solve the problem of missing data. We apply these

methods to expressways and a large urban road network to

assess their performance for different scenarios.

Index Terms— Missing data in large networks,

low-dimensional models

1. INTRODUCTION

Data Driven Intelligent Transport Systems (D2ITS) heavily

rely on historical traffic data for applications such as traffic

prediction, planning, management, and route guidance [1,

2]. These applications can improve the traffic conditions

by avoiding potential congestions and traffic jams. The

information about traffic parameters (speed, flow, travel

time) is gathered by GPS probes and loop detectors. Loop

detectors suffer from sparse coverage capability and high

installation costs. GPS probes are cheaper. However, due

to their dynamic nature, the collected data is usually sparse

with highly irregular temporal resolution [3]. Consequently,
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Fig. 1: Road network in Singapore (Outram to Changi).

the problem of missing data is prevalent in many transport

management systems [4–7]. The methods employed to tackle

this problem either use information from neighboring links

[8, 9] or consider historical information of the road segment

for imputation [5–7, 10]. These methods assume that the

problem of missing data is localized to isolated links and

time intervals. These assumptions are usually not valid when

considering large interconnected road networks. The spatial

and temporal distribution of missing data points is usually

highly erratic [11]. Therefore, the methods which rely on

complete historical or current information from neighbors for

data imputation [5–10] may not work in such settings.

Varying degrees of spatial-temporal correlations exist

between links in urban networks [12,13]. These relationships

can be used to create low-dimensional models even for large

networks [11, 14]. We propose to exploit these underlying

structures for recovering missing data by reconstructing

traffic profiles from low-dimensional representation of the

network. Methods such as Singular Value Decomposition

(SVD) and Canonical Polyadic (CP) decomposition are

usually applied to find low-dimensional representation of

multivariate systems. To perform the decomposition in

presence of missing data, we use Fixed Point Continuation

with Approximate SVD (FPCA) [15] and CP Weighted

OPTimization (CP-WOPT) [16, 17]. For benchmarking,

we compare their performance with Bayesian Principal

Component Analysis (BPCA) [2] and historical averages.

We compare the imputation accuracy of each algorithm for
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heterogeneous large networks and for different percentages

of missing data. We also provide comparison of computation

times of the algorithms.

The paper is structured as follows. In section II, we

propose different techniques for obtaining low-dimensional

models for large networks in presence of missing data. In

Section III, we explain the experimental setup. In section

IV, we compare the accuracy and computational complexities

of the models for different scenarios. In Section V, we

summarize our contributions, in relation to prior work and

suggest topics for future work.

2. LOW-DIMENSIONAL MODELS FOR MISSING

DATA IMPUTATION

Definition 1: A road network is defined as a directed graph G

= (N,E), where E = {si|i = 1, ..., p} represents the set of road

segments/links.

Definition 2: Weight of edge/link si is represented by z(si, t j),
which is a time varying function (average traffic speed for

time interval (t j − t0, t j)) representing the state of edge (link)

at time t j. For our study, sampling interval t0 is 5 minutes.

In this section, based on the above definitions, we will develop

data imputation methods for large road networks. Traditional

formulations that use neighboring information for imputing

data [8, 9] at the time te for the link si can be modeled as:

ẑ(si, te) = f1(z(θ1, te), ...z(θk, te)) : {θ j ∈ Θsi
}k

j=1, (1)

where Θsi
⊆ E is the set of k neighboring links of si. Different

methods are then applied to learn the function f1 from

historical relationships of the link si and its neighbors [8, 9].

In case, only the historical information of the link si is used

[5–7, 10], we get:

ẑ(si, te) = f2(z(si,τ1), ...z(si,τn)) : {τ j ∈ Tsi
}n

j=1, (2)

where Tsi
is the set of past similar temporal values, found

in the speed profile of link si. To estimate ẑ(si, te) in (1), it

is assumed that {z(θ j, te)}
k
j=1 are available for imputation.

Furthermore, {z(θ j, t < te)}
k
j=1 should also be reported so

that f1 can be estimated [8, 9]. Similarly in (2), enough

historical data should be available to learn f2 [5–7, 10]. In

many practical scenarios, adequate historical and neighbor

information is usually not available, for estimating parameters

of relationship functions f1 and f2 [11]. For example, in

this study, we consider a large subnetwork in Singapore (see

Fig.1). The figure shows the percentages of missing speed

data for different road segments for August, 2011, as provided

by the Singapore Land Transportation Authority (LTA). It is

quite evident from the figure that missing data problem is not

restricted to isolated links.

To overcome such situations, we propose following

methods, which can reconstruct data profiles for the whole

network from low-dimensional models even in the presence

of missing data.

2.1. Fixed Point Continuation with Approximate SVD

In this model, we create network profile MG ∈ R
d×p,

for the road network G. We represent each link si by a

speed profile mi, where {mi = [z(si, t1)...z(si, td)]
T}si∈E . The

network profile MG contains average speed values of all the

p links in the network G from time t1 to td , such that MG

= [m1m2...mp]. However, not all entries of MG are known.

Let (i, j) ∈ Φ be the set of entries in MG for which data

is available. Links in interconnected road networks exhibit

strong temporal and spatial correlations [11, 13, 14]. Hence,

we can model network G as a low-dimensional structure,

without losing a great deal of information. Consequently,

network profile MG can be represented by another lower rank

matrix XG with minimal error. This can be easily achieved by

SVD if all the entries of MG are known. In the presence of

set of missing values Φ, we can setup the problem as

min rank(XG)
s.t : |xi j −mi j| ≤ ε ∀ (i, j) ∈ Φ.

(3)

The parameter ε defines the error tolerance in case

reconstructed value xi j is different from the reported data

value mi j. However, matrix rank minimization is an NP-hard

problem [11, 15]. It can be shown that convex envelope of

rank(XG) is the nuclear norm ‖ XG ‖∗ of the matrix [15, 18].

So, we can redefine the problem in (3) in a more convenient

manner as

min ‖ XG ‖∗
s.t : |xi j −mi j| ≤ ε ∀ (i, j) ∈ Φ,

(4)

where ‖XG ‖∗ is defined as the sum of singular values {σi}
R
i=1

of XG with rank R, where R≪p.

We will solve the optimization problem defined in (4)

using FPCA [15].

2.2. Missing Data Imputation using CP Decomposition

Traffic data often contains repetitive historical patterns.

Traffic profiles for the weekdays/weekends usually show

strong correlation with other weekdays/weekends. Also,

there are distinct patterns during rush hours, and off peak

hours [2]. Missing data imputation can also be achieved

by exploiting the temporal correlations alongside spatial

correlations for low-dimensional representation. Unlike other

methods, which utilize temporal trends [2, 5, 6, 10], this

method does not make any assumption on the distribution of

missing data points, allowing us to apply it to more practical

settings. In this approach, we add one more dimension

to the network profile MG. This dimension contains data

from similar day(s). For our study, we create a tensor NG

∈ Rd×p×w, where d is the number of speed data points in

one day, and w is the number of similar days we use. The

parameter p is the number of links the in network G. Similar

to MG, NG also contains instances of unreported data. Let
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(i, j,k) ∈ Ψ be the set of known tensor entries. To obtain

low rank representation XG of NG in the presence of missing

data, we use CP Weighted OPTimization(CP-WOPT) [16]. It

has been shown to provide better performance as compared

to competing algorithms such as INDAFAC [16]. CP-WOPT

tries to minimize reconstruction error using the following

formulation:

fN (A,B,C) =
1

2∑(i, j,k)∈Ψ

(

ni jk −

R

∑
r=1

airb jrckr

)2

, (5)

where ni jk is the reported data value and air,b jr,ckr represent

the entries of factor matrices Ad×R, Bp×R and Cw×R

respectively [16]. We also consider MG ∈ R
d×p as a

low-dimensional tensor, to observe the effect of additional

information in NG as opposed to MG. We use CP-WOPT to

find low rank representation for MG for data imputation. We

refer to this as Low Dimensional CP Weighted OPTimization

(LDCP-WOPT).

2.3. Missing Data Imputation using BPCA

BPCA has been previously applied to small road networks

for traffic flow data imputation. It has been shown to provide

superior imputation accuracy against competing methods

[2]. However, those studies assumed that missing data

locations only had temporal dependence, isolated to each

link [2, 10]. In practice, such assumptions might not be

valid [1, 11], particularly for speed data collected from taxi

probes. Moreover, missing data percentage of only up to

50% was considered, where as field data may also contain

higher proportion of missing data (see Fig.1). In this study,

we assess the performance of BPCA by applying it to the

network profile MG of a large network G. Similar to above

mentioned approaches, we use BPCA to find the low rank

representation XG of the network profile MG, in presence of

missing data to impute missing values.

3. EXPERIMENTAL SETUP

In this section, we explain the data set we used, to compare

the imputation accuracy and computational times of above

mentioned algorithms. We use two scenarios to assess their

performance.

In the first scenario, we consider a network G1 comprising

of three connected expressways (Pan Island Expressway,

East Coast Parkway and Kallang Paya Lebar Expressway)

in Singapore, spanning from Outram park to Changi. For

analysis, we use data provided by LTA for the month of

August, 2011. The data contains averaged space speed values

per five minute interval for each individual road segment

{si}
p
i=1. Fig.1 shows the percentage of missing data for each

link. For analysis, we only consider those links for which

missing data percentage was less than 3%. In this way,
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(a) Missing percentage: 10% to 60%.
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(b) Missing percentage: 65% to 95%.

Fig. 2: Relative Error: Expressway Network.

we can calculate imputation accuracy by using field data as

ground truth. Based on this criteria, we obtained p = 910

road segments for the expressway network G1. For FPCA,

BPCA and LDCP-WOPT we use one day of data (d = 288)

to construct MGH1 . For NGH1, if we use data for a specific

day of the week (e.g., Mondays), then we have w = 4, since

we consider data for August 2011.

In the second scenario, we consider a large urban network

G2 (see Fig.1, colored blue) which has sufficient amount of

data (more than 97%) for performance analysis. It contains

road segments with different speed limits, capacities and

lanes. It spans from Outram to Changi and also contains

arterial roads carrying significant volumes of traffic, in the

downtown region. For G2, we obtain p = 6024 links. The

complete network shown in Fig.1 contains a total of 15258

links, which gives a measure of severity of missing data

problem in practical networks. Similar to MGH1 and NGH1,

we construct MGH2 and NGH2 for G2.

For performance analysis, we will consider matrices

{MGHi}
2
i=1 and tensors {NGHi}

2
i=1 as ground truth. We will

create MG1, NG1, MG2 and NG2 by randomly removing a

proportion of data(η), from MGH1 , NGH1, MGH2 and NGH2

respectively. As we will be reconstructing complete network

profiles {XGHi}
2
i=1 and {XGHi}

2
i=1 from low-dimensional

representations of {Gi}
2
i=1, hence a good error measure would

be relative error [15]. Relative error measures for matrices ρM

and tensors ρN are defined as

ρM :=
‖ XGH −MGH ‖F

‖ MGH ‖F

(6)

ρN :=
‖ XGH −NGH ‖F

‖ NGH ‖F

, (7)

where ‖ Q ‖F :=
(

∑i1,i2...in
(qi1,i2,...in)

2
)1/2

is defined as

Frobenius norm of tensor [19]. We also perform data

imputation for networks G1 and G2 using historical averages,

as benchmark for the proposed methods.

4. RESULTS AND DISCUSSION

In this section, we provide the imputation results for the two

scenarios discussed above.
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(a) Missing percentage: 10% to 60%.
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(b) Missing percentage: 65% to 95%.

Fig. 3: Relative Error: Large Urban Network.
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(b) Large Urban Network.

Fig. 4: Computation time for different methods.

Relative error values for the algorithms applied to

expressways G1 and large urban network G2 are shown in

Fig. 2 and Fig. 3 respectively. For low percentages of

missing data, BPCA provides lower relative error in both

scenarios. However, as the ratio of missing data increases,

accuracy of BPCA starts to degrade. For higher percentages

of missing data, its performance is only as good as historical

averages (see Fig. 2b, 3b). LDCP-WOPT and CP-WOPT

provide comparable performance for lower proportions of

missing data (see Fig. 2a, 3a). For higher percentages of

missing data, they perform better than BPCA. For sparse

data sets, CP-WOPT outperforms LDCP-WOPT, although

both methods have same underlying algorithm (see Fig.

2b, 3b). This seems to imply that additional temporal

information (even incomplete) from similar days tends to

provide more robust low-dimensional model for the network.

This robustness, comes at additional computational price

though (see Table 1, complexities reported for matrix A ∈
R

n×n, and tensor A ∈ Rn×n×n), as CP-WOPT takes large

time to converge to the solution (see Fig. 4). The difference in

performance is more profound in case of large urban network.

This can be attributed to the diverse nature of the network.

FPCA provides comparable performance to other methods for

small percentages of missing data. The method is also able to

reconstruct network profiles with reasonable accuracy, even

for sparse data sets (see Fig. 2b, 3b). For large percentages

of missing data, FPCA provides best imputation accuracy as

compared to other methods, for both scenarios.

It is also interesting to look at per iteration computational

complexities [20] of these algorithms (see Table 1) alongside

reported computational times (see Fig. 4). In Table 1, c ≤ n is

the number of subspace components used for reconstruction

[20, 21]. FPCA seems to report similar error measures

Table 1: Computation complexities of algorithms

CP-WOPT LDCP-WOPT FPCA BPCA

O(n3) [16] O(n2) [16] O(nc2 +c3) [21] O(nc3) [20]

(see Fig. 2,3) and convergence times (see Fig. 4) for a

wide range of percentages of missing data. It may be so

because a matrix X ∈ R
n×n with rank r ≪ n can be exactly

reconstructed using (4), with only O(nrlog(n)) known entries

[18]. Practical networks {MGi}
2
i=1 might not be low ranked

in the strict sense. However, as evident from Fig. 2and 3,

we can construct low rank representations for {MGi}
2
i=1 with

low error using (4). Convergence time of BPCA seems to

rely heavily on availability of data due to underlying EM

algorithm (see Fig. 4 and [2, 20]). As expected, CP-WOPT

has the highest convergence time, whereas LDCP-WOPT

reports smaller convergence times (see Fig. 4) because it

deals with MG rather than NG (see Table 1).

From the results, we can conclude that FPCA and

CP-WOPT can reconstruct traffic profiles with decent

accuracy, even from very sparse data sets. The methods work

well for expressway networks as well as large urban settings

containing a diverse set of road segments.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed low-dimensional models for

missing data imputation in large road networks. Missing

data is a prevalent issue faced by intelligent transportation

systems. Traditional methods require the availability of

sufficient historical data and assume that missing data occurs

at isolated instances [5–10]. However, due to highly erratic

reporting patterns of sensors, these assumptions are usually

not valid in practical road networks [1, 3]. As a consequence,

these methods fail to deal with the problem of missing

data in large interconnected urban settings. To overcome

these limitations, we propose methods that can perform data

imputation by constructing low-dimensional models of large

and diverse networks in presence of missing data. We

create these models by using FPCA and CP-WOPT for

incomplete matrices and tensors respectively. To establish

their imputation efficiency, we compared their performances

with BPCA [2] and historical averages. We performed

the comparison on expressways and a large generic urban

network, for varying degrees of missing data. Performance

evaluation showed that the low-dimensional models can

perform data imputation with improved accuracy even in the

presence of high percentage of missing data.

In the future, the imputation accuracy of the proposed

methods can potentially be improved by developing kernel

versions of the methods. Another application would be

to assess the prediction accuracy of data driven traffic

forecasting models, by performing traffic prediction, using

the data obtained from the proposed imputation methods.
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