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ABSTRACT

Starting from the electromagnetic theory, we derive a Bayesian non-
parametric model allowing for joint estimation of the magnetic field
and the magnetic sources in complex environments. The model is a
Gaussian process which exploits the divergence- and curl-free prop-
erties of the magnetic field by combining well-known model compo-
nents in a novel manner. The model is estimated using magnetome-
ter measurements and spatial information implicitly provided by the
sensor. The model and the associated estimator are validated on both
simulated and real world experimental data producing Bayesian non-
parametric maps of magnetized objects.

Index Terms— magnetic field, Gaussian processes, Maxwell’s
equations, divergence-free, curl-free

1. INTRODUCTION

The magnetic field has for a long time been used in navigation for
providing seafarers and merchants as well as orienteers and migrat-
ing birds with heading information. In indoor environments this nav-
igation task is challenged by magnetic distortions caused by the fer-
romagnetic structure in buildings. However, these distortions can
also provide position information using a magnetic map of the en-
vironment, either by navigating within a precomputed map or by
performing simultaneous localization and mapping (SLAM). This
requires good models of the magnetic field which will be investi-
gated more deeply in this work by addressing the electromagnetic
theory. The relation between the magnetic sources and their in-
duced magnetic field is well understood and was already formulated
by Maxwell [1, 2]. However, little work has been done incorpo-
rating this knowledge into a statistical framework suitable for esti-
mating magnetic fields in complex magnetic environments based on
noisy data. We present a Bayesian nonparametric model (a partic-
ular Gaussian process) capable of modeling the magnetic field as
well as the magnetic sources, see Figure 1. Our model exploits the
divergence- and curl-free properties of the magnetic field inherited
by the electromagnetic theory.

Gaussian processes [3] have previously been used for modeling
magnetic fields in an indoor environment to enable SLAM [4, 5].
Their navigation platform is equipped with a three-axis magnetome-
ter and the positioning is aided with odometry. However, in contrast
to our work, the model of the magnetic map does not incorporate
knowledge from Maxwell’s equations and is not able to estimate the
location of the magnetic sources. The same model has been investi-
gated further in [6]. Gaussian processes have recently also been used
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(a) Estimated shape of table (b) Real shape of table

Fig. 1: Estimated magnetic content in a table turned upside down.

for SLAM in a scalar potential field [7]. However, we consider mul-
tiple vector fields rather than one scalar potential field in this work.
Also in [8] the magnetic disturbances are used to improve IMU-
based position estimation. That work uses the restrictions induced
by the electromagnetic theory, but does not construct any magnetic
map and does not localize the magnetic sources. Chung et al. [9]
uses four tilt-compensated magnetometers to accomplish indoor lo-
calization. The magnetic map is captured in advance consisting of a
collection of magnetic signatures. The localization is performed us-
ing magnetic map fingerprints, where the performance is enhanced
by the multiplicity of the magnetometers. Also fusion of magnetic
field anomalies and laser has been investigated [10].

This work only addresses the modeling aspects of the magnetic
field and the magnetic sources. The localization problem we con-
sider separately [11], but the model is also suitable for being used in
the applications presented above. The contributions of this work are:
• A Gaussian process model which in a novel manner exploits

the divergence- and curl-free properties of the magnetic field.
• The model enables the magnetic field and the magnetic

sources to be estimated jointly.
• Interference with both magnetic field measurements and spa-

tial information is possible.
The divergence- and curl-free properties of a vector field have

previously been used for estimating fluid flows using Gaussian pro-
cesses [12]. However, to the best authors’ knowledge this has previ-
ously not been used in modeling magnetic fields.

2. MAGNETIC FIELDS

A magnetic field is a mathematical construction used for describing
forces induced by magnetic materials and electric currents. For each
point in space the magnetic field can be described using a vector and
as such it is a vector field. There are two different, but closely related
ways to describe the magnetic field, denoted with the symbols B and
H, where boldface denotes vector-valued quantities.
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These fields can not be any two arbitrary vector fields, but need
to obey physical laws, which in their most general form are described
by Maxwell’s equations [2]. By assuming absence of free currents
and time-dependent effects, these equations will reduce to

∇ ·B = 0, (1a)
∇×H = 0, (1b)

which means that the B-field is divergence-free and the H-field is
curl-free. Further, these two fields are coupled as

M =
1

µ0
B−H, (2)

where M is the magnetization describing our magnetic environment
and µ0 is the vacuum permeability, which is a physical constant hav-
ing the value µ0 = 4π × 10−7V s A−1 m−1. These fields will be il-
lustrated with the following example. More details on the derivation
can be found in [2].

Example 2.1 (Uniformly magnetized sphere) Consider a sphere
with a uniform permanent magnetization as depicted in Figure 2c.
By solving (1) and (2) for this special geometry we will end up in a
dipole field outside the sphere as depicted in Figure 2a and 2b. Note
that the B- and the H-field will be identical (up to the proportional
constant µ0) outside the sphere, which follows directly from (2)
using M = 0. However, inside the sphere the B- and the H-field
will be aligned in opposite directions in order to ensure that the
B-field is divergence-free (no sources or sinks) and that the H-field
is curl-free (no swirls).

(a) B-field (b) H-field (c) M-field

Fig. 2: The B-, H- and M-field of a uniformly magnetized sphere.
The B-field is here normalized with µ0.

By using (1)-(2) and prior knowledge of the magnetic environ-
ment, a number of things can be concluded, which will be used in
Section 4 when modeling the magnetic fields:

1. Additional information In all non-magnetic materials the
magnetization is equal to zero, M = 0. This is especially true
in locations where we measure the magnetic field, since air is
non-magnetic. Due to physical constraints the sensor cannot
be inside a magnetic material and we know that M = 0 at
these positions. This additional information will be used in
our framework as an extra measurement. Sensor fusion with
other sensors such as camera and laser range sensor, provid-
ing even richer information of where M = 0, is possible.
However, this is not considered in this work.

2. External field Most environments of interest consist of an ex-
ternal homogeneous field B0 or H0, usually the earth mag-
netic field or a slight deformation of it. Due to the linear-
ity of the field equations (1), this external field can be su-
perimposed throughout all space, where (2) gives the relation
B0 = µ0H0. We will therefore later model the B- and the
H-field to have a common, but unknown mean.

3. Smoothness If M(x) = 0 in a neighborhood of x, the field
equations (1) will ensure that B and H are infinitely contin-
uously differentiable at x. This gives the magnetic field a
“smooth” character and the magnetic field at x1 will be very
similar to the magnetic field at x2 if x1 and x2 are close.
This property motivates us to employ Gaussian processes in
modeling these fields, as will be explained in the next section.

3. GAUSSIAN PROCESSES

A Gaussian process (GP) [3] is a stochastic process suitable for mod-
eling spatially correlated measurements. GPs can be seen as a distri-
bution over functions

f(x) ∼ GP
(
µ(x),K(x,x′)

)
, (3)

where the process is uniquely defined with its mean function µ(x)
and covariance function K(x,x′).

The GP is a generalization of the multivariate Gaussian proba-
bility distribution in the sense that the function values evaluated for
a finite number of inputs x1, . . . ,xN are normally distributed f(x1)

...
f(xN )

 ∼ N (µ,K), where µ =

µ(x1)
...

µ(xN )

 (4a)

and K =

K(x1,x1) · · · K(x1,xN )
...

...
K(xN ,x1) · · · K(xN ,xN )

 . (4b)

3.1. Mean function

In this work we will consider a constant, but unknown mean function
µ(x) = β, where we put a Gaussian prior on the mean

f(x) ∼ GP
(
β,K(x,x′)

)
, where β ∼ N (0, σ2

βI). (5a)

By integrating out the parameter β, this can be reformulated as a
zero mean GP

f(x) ∼ GP
(
0,K(x,x′) + σ2

βI
)
. (5b)

3.2. Vector-valued covariance functions

The covariance function (a.k.a. kernel) is the crucial component
when modeling using a GP. This function encodes the assumptions
we make on the functions to be learned. For modeling smooth func-
tions (as desired in Item 3 in Section 2) with scalar output the most
common choice is the squared exponential (SE) covariance function

K(x,x′) = σ2
fe
− ‖x−x′‖2

2l2 , (6)

where σf is the expected amplitude and l the expected length-scale
of the function we want to learn. This covariance function can be ex-
tended for learning functions with multiple outputs as presented be-
low. Learning functions with multiple outputs has recently attracted
more attention. A review can be found in [13], which discusses dif-
ferent kernels for learning vector-valued functions.

3.2.1. Diagonal squared exponential covariance function

The most obvious extension of (6) to multiple outputs is to model
each component fi(x) separately using a scalar SE covariance func-
tions resulting in a diagonal SE kernel

K(x,x′) = σ2
fe
− ‖x−x′‖2

2l2 · Iny , (7)
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where ny is the dimension of the output. The kernel (7) can be ex-
tended to have different hyperparameters l and σf for each output
dimension. This kernel was used by [4] and [5] in modeling the
magnetic field of an indoor environment. However, this kernel does
not allow for the possibility of modeling correlations between the
different components fi(x). Especially, it does not produce func-
tions which necessarily obey the field equations (1). This is made
possible by the two covariance functions introduced below.

3.2.2. Divergence- and curl-free covariance functions

A kernel for learning divergence-free vector fields was first intro-
duced by [14]. Based on the scalar SE kernel (6), this kernel reads

KB(x,x′) = σ2
fe
− ‖x−x′‖2

2l2 (8)

·

((
x− x′

l

)(
x− x′

l

)T
+

(
ny − 1− ‖x− x′‖2

l2

)
Iny

)
,

which ensures that all functions sampled from a GP with such a ker-
nel will be divergence-free. Similarely, [15] introduced a kernel for
learning curl-free vector fields, where the extension of (6) reads

KH(x,x′) = σ2
fe
− ‖x−x′‖2

2l2

(
Iny−

(
x− x′

l

)(
x− x′

l

)T)
. (9)

The interested reader can refer to [15, 12, 16] for more analysis and
discussion on these two kernels.

3.3. Regression

GPs are also capable of handling noisy measurements yk of the func-
tion f(xk). We consider the measurement model

yk = f(xk) + ek, ek ∼ N (0,Σ), (10)

where ek has the interpretation of being measurement noise. Our
objective is to use a set of measurements together with their corre-
sponding inputs {xk,yk|k = 1, . . . , N} to learn the function val-
ues for other test inputs f∗ =

[
f(x∗1)T . . . f(x∗N∗)

T
]T. In the

same manner as in (4), the joint distribution for the measurements
y =

[
yT
1 . . . yT

N

]T and the test output f∗ is[
y
f∗

]
∼ N

(
0,

[
K(X,X) + IN ⊗ Σ K(X,X∗)

K(X∗,X) K(X∗,X∗)

])
, (11)

where ⊗ denote the Kronecker product,

K(X,X∗) =

K(x1,x
∗
1) . . . K(x1,x

∗
N∗)

...
...

K(xN ,x
∗
1) . . . K(xN ,x

∗
N∗)

 (12)

and similarly for the other matrices K(X,X), K(X∗,X) and
K(X∗,X∗). From the joint Gaussian distribution p(y, f∗) in (11)
the conditional distribution p(f∗|y) can easily be computed as

f∗|y ∼ N (µf∗ ,Σf∗), (13a)

µf∗ = KT
∗K
−1
y y, Σf∗ = K∗∗ −KT

∗K
−1
y K∗, (13b)

where K = K(X,X), K∗ = K(X,X∗), K∗∗ = K(X∗,X∗) and
Ky = K(X,X) + IN ⊗ Σ.

3.4. Estimating hyperparameters

The hyperparameters of the covariance function K(x,x′) and the
measurement noise covariance matrix Σ can be estimated from the

data {xk,yk|k = 1, . . . N}, which makes the learning of the func-
tion values f∗ completely data driven in the sense that no tuning
parameters are needed. This will be accomplished by maximizing
the log marginal likelihood log p(y, |X,θ), where θ denote the hy-
perparameters of K(x,x′) and Σ. From (11) we have that y|X,θ ∼
N (0,Ky), which gives

log p(y|X,θ) = −1

2
yTK−1

y y− 1

2
log |Ky| −

nyN

2
log 2π. (14)

Following [3], the gradient of the log marginal likelihood w.r.t. the
hyperparameters can be computed as

∂

∂θj
log p(y|X,θ) =

1

2
tr

(
(ααT −K−1

y )
∂Ky

∂θj

)
, (15)

where α = K−1
y y. This enables an efficient gradient based optimiz-

ing routine for maximizing (14). In this work the BFGS method [17]
has been used.

4. MODELING

The GP framework will now be combined with the electromagnetic
theory to construct a model for jointly estimating the B- and the
M-field using a three-axis magnetometer. We assume that the mea-
surements of the magnetic field are corrupted with Gaussian noise

yB,k = fB(xk) + eB,k, eB,k ∼ N (0, σ2
nI3), (16a)

where yB,k is a three-axis magnetometer measurement transformed
into world coordinates and fB(xk) is a function being equal to the
B/µ0-field (the B-field normalized with µ0) at location xk. As dis-
cussed in Item 1 in Section 2 we also know that the M-field is zero
at location xk, where the measurement yB,k was collected. This in-
formation is incorporated by considering a noise free measurement
yM,k = 0 with the following measurement equation

yM,k = fM(xk) = fB(xk)− fH(xk), (16b)

where fM(xk) and fH(xk) are functions corresponding to the M-
and the H-field and where we have used the coupling given by (2).
Note that this coupling is the key equation for our model since it
enables us to jointly estimate the B-field as well as the M-field in
contrast to prior work.

We put this into a statistical framework by considering fB and
fH (and consequently also fM via (16b)) to be GPs. Following the
discussion in Item 2 in Section 2 we consider fB and fH to have a
common constant mean function (corresponding to the earth mag-
netic field) and we use the covariance functions given in (8) and (9)
to preserve the divergence- and curl-free properties of fB and fH
according to the field equations (1). This gives

fB ∼ GP
(
β,KB(x,x′)

)
, fH ∼ GP

(
β,KH(x,x′)

)
, (16c)

β ∼ N (0, σ2
βI3), (16d)

where we have used a Gaussian prior on the unknown mean β.
The model (16) can be reformulated into the standard model de-

scription outlined in Section 3

yk = f(xk) + ek, (17a)

f(x) ∼ GP
(
0,K(x,x′)

)
, ek ∼ N (0,Σ), (17b)

by augmenting the measurements and the noise covariance matrices

yk =

[
yB,k

yM,k

]
and Σ =

[
σ2
nI3 0
0 0

]
(17c)
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Fig. 3: Estimated fields induced by a uniformly magnetized sphere (see Example 2.1) using our
proposed kernel (17) (blue) and the SE kernel (7) (green) together with the training data (red).
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Fig. 4: The training data in the real
world experiment seen from above
together with the trajectory that the
magnetometer has followed.

as well as the outputs of the functions that we want to learn

f(x) =

[
fB(x)
fM(x)

]
=

[
I3 03

I3 −I3

] [
fB(x)
fH(x)

]
∼ GP(0,K), (17d)

where K = K(x,x′). The augmented function f : R3 → R6 will
then have the covariance function

K =

[
KB + σ2

βI3 KB

KB KB + KH

]
, (17e)

where the relation f(x) ∼ GP(0,K) ⇒ Cf(x) ∼ GP(0,CKCT)
has been used as well as (5) to reformulate this as a zero mean GP.
Finally, we encode θ ,

[
log σ2

f log l2 log σ2
β log σ2

n

]
, where

the logarithm ensures the positiveness of σ2
f , l2, σ2

β and σ2
n.

5. RESULTS

The ability of the proposed model to model magnetic fields will be
evaluated by using a simulated data set as well as a real world data
set. The results will be reported in this section.

5.1. Simulated experiment

The setup with a uniformly magnetized sphere presented in Exam-
ple 2.1 is used to estimate the B-, H- and M-field given in Figure 2.
Consider a sphere centered at the origin with radius 3 m having a uni-
form magnetization of M = [0 1 0]

TA m−1. In total N = 50
training inputs are chosen from a region outside the sphere and in-
side a square with dimension 10 m× 10 m aligned with the xy-plane,
which also is centered at the origin. For each training input the cor-
responding training output is computed using the true field perturbed
with Gaussian noise having a standard deviation of σn = 0.01. The
test inputs are chosen from a grid xy-plane with an interval of 0.75 m.
The estimated magnetic fields at these test inputs is then compared
with the true magnetic fields. Both the SE kernel (7) and the pro-
posed kernel (17) are applied to the data, where the hyperparameters
for each kernel are estimated as described in Section 3.4. The results
are given in Figure 3.

Both the SE kernel and the proposed kernel (17) are able to re-
produce the character of the true B-field as given in Figure 2a. By
comparing the estimated B-field with the true B-field, the proposed
covariance function is only slightly better with a root mean square
error of 0.33 A m−1, whereas the corresponding number for the SE
covariance function is 0.38 A m−1. However, the great advantage
with the proposed covariance function is its ability to estimate the
M-field as shown in Figure 3c, which resembles the true M-field in
Figure 2c. Both the location of the magnetic source and the direction
of its magnetization are correctly captured. By using the relation (2),

also the H-field can be estimated as presented in Figure 3b, which
can be compared with the true H-field in Figure 2b.

5.2. Real world experiment

A real world experiment was conducted in a magnetic environment
consisting of a table with metal frame turned upside down as dis-
played in Figure 1b. A three-axis magnetometer has been used to
measure the magnetic field at various locations around that table and
the position and the orientation of the magnetometer unit were mea-
sured using an optical reference system (Vicon). The magnetometer
measurements were then transformed into world coordinates using
the orientation provided by the reference. This data has been down-
sampled to 2 Hz to reduce the number of data points. Together with
the position estimate from the reference this comprises the training
data as displayed in Figure 4. For this dataset the hyperparameters
have not been estimated but rather tuned to σf = 0.3, l = 0.15,
σb = 1 and σn = 0.3 for reasons discussed below. In Figure 1a the
region of the M-field which exceeds 30% of the maximal estimated
M-field is displayed. This estimated magnetic map has visual sim-
ilarities with the real table in Figure 1b. All four table legs can be
distinguished as well as the frame on which the table top is attached.

The proposed GP (as any other stationary GP) is restricted to us-
ing the same set of hyperparameters for all data. This is problematic
in environments which have different characteristic length scales and
signal amplitudes in different regions in space. When estimating the
hyperparameters in the proposed manner using data collected in such
environments, the result might not be sound. The hyperparameters
have therefore been considered as tuning parameters.

6. CONCLUSION AND FUTURE WORK

We have introduced a Bayesian nonparametric model for jointly esti-
mating both the magnetic field and the magnetic sources. The model
is based on a vector-valued stationary Gaussian process (GP) with
a covariance function exploiting the divergence- and curl-free prop-
erties of the magnetic field derived from the electromagnetic theory.
The model has been compared with a component-wise GP proposed
by [4] for modeling magnetic fields. In the comparison only a small
improvement in estimation performance could be reported. How-
ever, the great advantage of the proposed method is its ability to also
model the magnetic sources in a nonparametric manner, which has
been illustrated using both simulated and real world data.

In future work we will extend our nonparametric model to han-
dle more complex environments. One promising idea is to use a mul-
tiplicity of GPs governed by a hierarchical Dirichlet process [18].
Others ideas are to use a new concept of multiresolution Gaussian
processes [19] or an infinite mixture of Gaussian process experts
[20]. Our final goal is a full SLAM framework.
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“Near-optimal Exploration in Gaussian Process SLAM: Scal-
able Optimality Factor and Model Quality Rating,” in Pro-
ceedings of European Conference on Mobile Robots, Örebro,
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