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ABSTRACT

The difficulty of Very High Resolution (VHR) image change
detection is mainly due to the low separability between the
changed and unchanged class. The traditional approaches
usually address the problem by solving the feature extraction
and classification separately, which cannot ensure that the
classification algorithm makes the best use of the features.
Considering this, we propose a novel approach that combines
the feature extraction and the classification task by utilizing
the sparse representation algorithm with discriminative dic-
tionary. Experiments on real data sets show that our method
achieves effective results.

Index Terms— Change detection, VHR remote sensing
image, sparse representation, discriminative dictionary

1. INTRODUCTION

Change detection problem aims at detecting the changed
regions of the co-registered images acquired over the same
scene at different times. With the development of VHR
sensors, change detection of VHR images has a great potential
applications such as disaster management, environmental
monitoring, urban management, etc. However, the nature
of VHR image changes the prospectives of change detec-
tion, and the traditional change detection methods for low-
to-moderate resolution images cannot be applied for VHR
images directly. The existing techniques are far from the
practical requirements with respect to accuracy, speed or
degree of automation.

In general, the difficulty of VHR image change detec-
tion lies in the low separability between the changed and
unchanged class, which is attributed to the complex imag-
ing procedure of VHR images. For the traditional low-
to-moderate resolution images, the changes are available
related to the spectral difference, and most of the traditional
change detection approaches are based on the pixel-wise
comparison. In contrast, the problem of mixed pixels is
alleviated for VHR images, but the interclass variance is not
improved simultaneously with the spatial resolution increase
(the discriminability between different land-cover classes is
determined simultaneously by the spatial resolution and the

spectral resolution, and there is a tradeoff between the spatial
resolution and the spectral resolution). In consequence,
the change features are difficult to be classified with high
accuracy even by a “good” classifier. In addition, due to the
impacts caused by the image registration error, view-angle
variation, meteorological or seasonal changes, the unchanged
class is more difficult to be separated from the changed class.

Many approaches are presented in the literature to address
the above difficulties. For instance, Huo proposed to extract
discriminative local features [1] (e.g., Scale Invariant Feature
Transform (SIFT)) to represent complex urban objects and
utilize robust distance metric to improve the separability
between the changed and unchanged class. Mura [2] pro-
posed to use morphological filters to preserve the geometrical
structures and filter the homogeneous areas simultaneously.
However, one limitation of the above approaches lies in the
separation of feature extraction and classification. In our
opinion, the discriminativeness of the features is closely re-
lated to the classifier. High separability between the changed
and unchanged class cannot be guaranteed if the feature
extraction and classification are implemented step by step.
For the similar reason, [3] concludes that sparsity cannot
help improve classification by the traditional manner. Sparse
representation and dictionary learning have been widely used
in signal de-noising [4], face recognition [5], etc. But they
are new for remote sensing image processing, and only few
change detection approaches [6, 7] are related to sparse
representation and dictionary learning; Nevertheless, all of
them are designed for low resolution images, and the above
two key steps (e.g., change feature extraction and change
feature classification) are implemented separately. To address
the difficulties of VHR images, a novel approach is proposed
in this paper. The rationale of the proposed approach is to
improve the low separability between the changed class and
the unchanged class by considering change feature extrac-
tion and change feature classification simultaneously, which
is implemented by sparse representation and discriminative
dictionary learning. To our best knowledge, there is no such
papers in the literature.

The remainder of this paper is organized as follows:
Section 2 describes the related work. Section 3 elaborates
the proposed approach step by step. Section 4 reports the
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experimental results on real QuickBird images. Finally,
Section 5 draws the conclusions.

2. RELATED WORK

2.1. Sparse Coding

Given a signal y ∈ Rn and a dictionary D ∈ Rn×K , y can be
represented by the sparse coding x ∈ RK as follows

x = argmin
x
‖y− Dx‖22, s.t. ‖x‖0 ≤ T, (1)

where T controls the sparsity of x. There are many algorithms
for solving this problem. For instance, Matching Pursuit
(MP) [8] and Orthogonal Matching Pursuit (OMP) [9] solve
l0 norm problem directly, and other methods such as Gradient
Projection (GP) [10], Homotopy [11] solve the following
relaxed problem

x = argmin
x
‖y− Dx‖22, s.t. ‖x‖1 ≤ T. (2)

2.2. Dictionary Learning

Given signals Y = [y1, . . . , yN ] ∈ Rn×N , the dictionary
learning problem can be formulated as follows

< D,X >= argmin
D,X
‖Y− DX‖2F , s.t.∀i, ‖xi‖0 ≤ T, (3)

where X = [x1, . . . , xN ] ∈ RK×N are sparse representation
coefficients. The problem (3) can be solved by K-SVD [12],
ODL [13], etc.

A recent trend is adding the discriminativeness to the
learned dictionary. For example, Zhang proposed a discrim-
inative K-SVD method [14], which is a relaxed version of
supervised dictionary learning [15]. Other discriminative
dictionary learning methods can be found in [16, 17].

3. THE PROPOSED APPROACH

Let us consider two multi-temporal co-registered VHR im-
ages Z1 and Z2 of size I × J acquired in the same geograph-
ical area at different times t1 and t2. The objective of change
detection is estimating a binary change map B, where the
value of pixel (i, j) will be 1 if there is a significant change
and 0 otherwise.

The main idea of the proposed approach is to capture
the complex objects by local features, encode and clas-
sify the discriminative change features by sparse coding
and discriminative dictionary learning. As illustrated by
Fig. 1, the proposed change detection method consists of
the following four steps: feature extraction, training sample
selection, dictionary and classifier learning and change map
generation.
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Fig. 1. Flowchart of the proposed change detection method.

3.1. Feature Extraction

Due to the intricacies of VHR images, it is difficult for the
pure usage of the spectral features to capture the complex
structures of urban objects. For this reason, SIFT [18], a
local descriptor, is used to encode the local structure and
texture information. The invariance to the linear changes of
spectral features can help reduce the false alarms caused by
impacts such as seasonal and lighting variation. In addition,
the rotation invariance makes it robust to the misalignment.
In this paper, dense SIFT features z1 and z2 are extracted
at each pixel of the two images Z1 and Z2 individually.
Then the change vector is formed by stacking z1 and z2, i.e.,
y = [zT1 zT2 ]T . An alternative way is differencing z1 and z2,
but it will lose information, so it is not used this paper.

3.2. Training Sample Selection

For classification-based change detection method, training
samples need to be selected. The traditional manual labeling
is very tedious, especially in the cases where a large amount
of data need be processed. In consequence, automatic training
sample selecting is preferred. Inspired by the EM-based
change detection method for low resolution remote sensing
images in [19], we adopt double thresholds to select the
reliable training samples. Different from the method in [19],
the proposed approach is based on the amplitude of SIFT
feature difference, instead of the spectral difference. This
amplitude is computed by the Euclidean distance between two
corresponding SIFT features, i.e. zd = ‖z1 − z2‖2. Without
loss of generality, supposing all the zd are independent with
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each other and obey Gaussian Mixture Distribution:

p(zd) = p(zd|ωn)P (ωn) + p(zd|ωc)P (ωc), (4)

where P (ωc) and P (ωn) are the prior probability of the
changed and unchanged class respectively, p(zd|ωc) and
p(zd|ωn) can be modeled by Gaussian distributions, and the
parameters can be estimated by EM algorithm. The optimum
threshold thr for dividing the changed and unchanged class
can be obtained by solving the following equation

p(zd|ωn)P (ωn) = p(zd|ωc)P (ωc). (5)

Based on the estimated parameters: the mean values of the
changed and unchanged class mc, mn, and the optimum
threshold thr, we can define the double thresholds

thru = mu + θ(thr −mu), (6)
thrc = mc + θ(thr −mc), (7)

where θ controls the number of positive (changed) and nega-
tive (unchanged) training samples. The smaller the θ is, the
less the training data will be. In other words, we want to
select the most reliable training samples, but the distribution
may not be typical. After determining the double thresholds,
the candidate training samples are chosen as follows: if the
sample zd satisfies zd ≥ thrc, it will be added into the
positive training set Yc; if zd ≤ thru, it will be added into the
negative training set Yu. For convenience, the whole training
set is denoted as Y = [Yc Yu], and the corresponding label
matrix H = [Hc Hu]. To make the proposed method much
faster and keep good performance, only r% (e.g. 4%) of
the candidate training samples are selected at random for the
latter dictionary learning.

3.3. Dictionary and Classifier Learning

Given the matrix Y and H, the discriminative dictionary D
and the classifier W are expected to achieve simultaneously.
To this aim, we adopt the following discriminative dictionary
learning model

< D,W,X >=arg min
D,W,X

‖Y− DX‖2F

+β‖H−WX‖2F + α‖W‖2F
s.t.∀i, ‖xi‖0 ≤ T,

(8)

where H = [h1, . . . ,hN ] ∈ RC×N is the label matrix of
training samples, hi is the label vector of the i-th sample (for
2 classes case, hi is [0 1]T or [1 0]T ), C is the number of
classes (C = 2 in change detection task), W is the classifier
coefficient matrix. The first term represents reconstruction
errors, the second term stands for classifying losses, the last
term is used for preventing over-fitting. The above problem
can be solved by K-SVD effectively. By the above model,
the dictionary and classifier are learned simultaneously, which
provides the potential to improve the low separability between
the changed and unchanged class by coding the change fea-
tures as mentioned above.

3.4. Change Map Generation

After achieving discriminative dictionary D and the classifier
W, the task left is to encode the change vector y and label it
based on the classifier W. For a change vector y, the Sparse
Change Vector (SCV) x is obtained by solving Eq. (1). Then,
the classifier score vector is h = Wx. The final label of
change vector y is computed as follows

label = argmax
i
hi, (9)

where hi is the i-th element of h. By this way, the change
map can be acquired by classifying all the SCVs.

It is worth noting that SIFT features are computed within
the local patch of the predefined size, and the size is closely
related to the scale (or the size) at which the changes are ob-
served. As we know, change detection accuracy is dependent
on the scale (the image resolution or the observation window),
and it is limited for the traditional approach to detect the
complex changes reliably if only one scale information is
considered. So multi-level method can be used to improve
the performance. In this paper, we merge the results generated
at different levels based on a simple majority voting method
(as shown in Fig. 2), where the window size (equal to 4 ×
binSize) of SIFT descriptors varies at different levels.

Fuse

Final Result

Mono-level

Spatial bin

Window

Mono-level

Mono-level

Fig. 2. Multi-level change detection by decision fusion.

4. EXPERIMENTAL RESULTS

For space limitation, experiments on two data sets are dis-
cussed in this paper. The images are acquired over Beijing
(China) by QuickBird in 2002 and 2003 respectively, the
image size of the first data set is 1024×1024 pixels(as shown
in Figs. 3(a)(b)), and the second data set is 1120×1120 pixels
(as shown in Figs. 3(d)(e)), the spatial resolutions are both
0.7m/pixel. The reference change maps for the two data sets
are shown in the last column of Fig. 3.

One important difference of the proposed approach with
others lies in the sparse coding and discriminative dictionary
learning. To demonstrate the effectiveness of the proposed
approach, we compare the proposed approach with EM-
based approach (After getting the threshold thr, EM-based
approach achieves the change map by thresholding zd.) with
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Fig. 3. Data sets used in our experiments. (a) and (d) are
images taken in 2002. (b) and (e) are images taken in 2003.
(c) and (f) are the reference change maps.

respect to False Alarm (FA), Missed Alarm (MA) and Total
Error (TE). The above two approaches are conducted both in
mono-level and multi-level fashion. In all cases, we keep the
parameters θ, β, T,K, r fixed, i.e. θ = 0.1, β = 25, T =
10,K = 500, r = 4. In mono-level case, parameter binSize
is set to be 24 pixels; in multi-level case, we change parameter
binSize from 20 to 28 pixels with a step size 4, i.e. we use
three levels of context.

The obtained change maps for the first data set are shown
in first row of Fig. 4 and the corresponding FAs, MAs and TEs
are listed in the first six rows of Table.1. As can be seen from
Table.1, our methods (S-DDL short for mono-level method
based on discriminative dictionary learning and M-DDL is the
corresponding multi-level version) get lower FAs than EM-
based methods (S-EM and M-EM) in both mono-level and
multi-level cases. But, the MAs increase a little, meaning
that our methods make a trade-off between FA and MA. The
possible reason lies in the following fact: the sampling rate r
is so small that can’t find an appropriate change vector (even
if there is) to reflect the small regions of change, or the value
of θ is too small to make the training samples representative
enough.

The change maps for the second data set are shown
in second row of Fig. 4 and the corresponding FAs, MAs
and TEs are listed in the last six rows of Table.1. By
comparison, it can be concluded that our method obtains
better performances in both FA and MA than that by EM-
based method.

The changes may happen in different scales, so multi-
level context can help improve the performance. The above
conclusion holds for the proposed approach. But for the
EM-based method, the improvements benefited from multi-
level context are insignificant, this is due to the fact that
the changed areas detected using larger binSize are usually
covered by the regions detected using smaller binSize for
EM-based method.

Fig. 4. Result comparison. (a) and (e) are obtained by
EM threshold using single level context. (b) and (f) are
obtained by our method using single level context. (c) and
(g) correspond to three-level EM threshold method. (d) and
(h) correspond to our method using three levels of context.

Table 1. False Alarms (FAs), Missed Alarms (MAs), and
Total Errors (TEs) resulted from EM threshold and our
method for mono-level (S-) and multi-level (M-) cases. (DS1
stands for data set1 for short, DS2 is similar.)

S-EM S-DDL M-EM M-DDL
pixels 88245 51826 82673 46674

rate(%) 13.64 8.01 13.10 7.39
pixels 14593 37087 14324 33455

rate(%) 5.63 14.30 5.68 13.26
pixels 102838 88913 96997 80129

rate(%) 11.35 9.81 10.98 9.07

pixels 146345 102897 137127 86853
rate(%) 20.22 14.22 19.38 12.27
pixels 38107 24837 37321 20078

rate(%) 10.17 6.63 10.21 5.49
pixels 184452 127734 174448 106931

rate(%) 16.79 11.63 16.25 9.96

Method

DS1

DS2

FA

MA

TE

FA

MA

TE

5. CONCLUSIONS

In this paper, a novel change detection method is proposed
based on sparse representation and discriminative dictionary
learning. By learning a discriminative dictionary, the sparse
representation coefficients are easier to be separated, which
makes our method enjoy a higher accuracy than the simple
EM-based method. The experiments in both mono-level
and multi-level context for different data sets demonstrate
the effectiveness of our proposed method. Future work will
concentrate on more superior multi-level context methods.
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