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ABSTRACT

We consider the problem of detecting stimulus driven changes
in brain functional connectivity. Estimating functional con-
nectivity from fMRI data sampled over a small time period is
difficult - there is simply not enough data to permit reliable es-
timates. We investigate the use of a sparse Gaussian graphical
model regularized by a graph learned from data sampled over
a longer time period. We establish a framework to identify
the changes in brain connectivity driven by short-term stim-
uli. Results of experiments on both synthetic and real fMRI
data illustrate the attributes of our methods as well as the dif-
ficulty of the problem.

Index Terms— Brain Connectivity, Graphical Lasso,
fMRI, Time-Dependent Network

1. INTRODUCTION

An undirected graphical model is a mathematical structure
that can be used to represent pair-wise relationships among
a set of variables by a joint distribution. It has applications
in many domains including information extraction, computer
vision and gene networks. One of the most widely used
undirected graphical models is the Gaussian graphical model.
This assumes the variables to have a multivariate Gaussian
distribution. This model has been recently used to analyse
functional interactions between different brain regions in hu-
man brain - this is known as a functional brain connectivity
network. In the graph, each node represents a voxel or set of
voxels forming a region of interest (ROI). The graph edges
encode dependencies between voxels or ROIs. The graphical
model thus provides a functional connectivity model within
the human brain. Previous studies based on anatomical brain
databases suggest that the true brain connectivity network is
sparse [1–3], and many recent efforts have shown the promise
of using sparse Gaussian graphical models to analyse brain
connectivity [4–7].

These studies are applied to steady state time series data,
and assume that the brain connectivity network does not
change during the experiment. However, when the exper-
imental conditions (such as the stimuli) vary with time, it
is of interest to learn the dynamical manner of interactions

between different brain regions [8]. Some previous work
has addressed this problem. The topological changes in the
connectivity network is analyzed by statistical parametric
network in [9]. But the timing and duration of different
states, which are usually difficult to estimate, are specified
as prior knowledge. The approach in [10] estimates con-
nectivity networks for predefined non-overlapping windows
with different temporal scales (days, hours and minutes), but
it loses the ability to adaptively choose the location of the
windows. A dynamic connectivity regression method in [8]
automatically detects the change points of different states by
estimating a sparse Gaussian graphical model, but it requires
an exhaustive search so that both computational complexity
and sampling complexity can be issues for fine partitions of
the time series.

In this paper, we take a different approach. We propose a
method to identify changes in the brain connectivity network
driven by short-term stimuli. Unlike [10], we use a sliding
window to extract overlapping subsets of the time series data.
To mitigate the issue of insufficient data, a temporal average
network is learnt over a larger time scale and is then used to
design a regularization penalty for the estimation of the con-
nectivity network over a smaller time scale. The assumption
that graph structure is the same across subjects as in [8] is
not required for our method so that different sets of voxels or
ROIs can be selected for different subjects. We conducted ex-
periments on both synthetic and real data to demonstrate the
the attributes and deficiencies of the proposed method.

2. MAP-PENALIZED GRAPHICAL LASSO

The graph of an undirected graphical model is denoted by
G = (V,E) where V is the set of nodes and E the set of
edges. Each edge in E models the relationship between the
two variables in V that it connects. The problem of learn-
ing a graph for Gaussian graphical model is equivalent to
estimating the precision matrix (inverse covariance matrix),
since the non-zero off-diagonal elements of the precision ma-
trix represent edges in the graph [11]. Specifically, given n
independent samples {y1, y2, . . . , yn} drawn from a p-variate
Gaussian distribution such that yi ∼ N(µ,Σ), the task is to
estimate its inverse covariance matrix Θ = Σ−1. A missing
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edge between two nodes in the graph indicates conditional in-
dependence between the corresponding variables. It gives rise
to a zero element in the precision matrix. Therefore, learning
a sparse Gaussian graphical model is equivalent to estimat-
ing a sparse precision matrix. A sparse estimate of Θ can
be obtained by minimizing the penalized log-likelihood over
positive definite matrices [11]:

arg min
Θ
− log(det(Θ)) + trace(SΘ) + λ‖Θ‖1 (1)

where S = 1
n−1

∑n
i=1(xi − x̄)(xi − x̄)T is the empirical

covariance matrix, ‖Θ‖1 is the `1-norm – the sum of the ab-
solute values of the elements in Θ, and λ > 0 is the regular-
ization parameter. This problem is also referred to as graph-
ical lasso (GLasso) problem [12], and much recent research
has focused on efficiently estimating Θ [11–18]. However,
when the sample size is much less than the sparsity of the
precision matrix, GLasso fails to recover the correct graph
(see more details in §4.1). In this paper, we employ an extra
map-penalized regularization to learn the precision matrix of
a subset of the data. We formulate the problem as:

arg min
Θ
− log(det(Θ))+ trace(SΘ)+λ‖Θ‖1 +α‖M�Θ‖1

(2)
where α > 0, the map M is a binary matrix determined by
the whole data and � denotes element-wise multiplication.
The quality of M depends on the number of available data
samples, but at least we are using all the data to estimate M.
The idea is to use M to regularize Θ for the subset of the
data. Problem (2) is equivalent to a GLasso with a generalized
regularization term ‖L�Θ‖1 [19], whereL = λ1+αM and 1
is a matrix of ones. We adapted the QUIC algorithm proposed
in [17] to solve this optimization problem.

Given a matrix A, define an indicator matrix B where
bij = 1 for nonzero elements aij , otherwise zero. Given A
and a baseline matrixA0, we get corresponding indicator ma-
trices B and B0 and denote ¬B and ¬B0 as their element-
wise negation not matrices. Then we define:
(1) sp(A) = ‖B‖0, the number of non-zero elements in A.
(2) nn(A) = ‖B � B0‖0. The number of non-zero elements
in A0 that are also non-zero in A.
(3) nz(A) = ‖¬B�B0‖0. The number of non-zero elements
in A0 that are zero in A.
(4) nz(A) = ‖B � ¬B0‖0. The number of zero elements in
A0 that are non-zero in A.

3. DETECTING STIMULUS DRIVEN CHANGES

Let D ∈ Rp×n be the fMRI time-series data of a subject,
where p is the number of voxels and n is the number of
TR (time to repetition = time needed to loop through all of
the slices). We proposed the following approach to detect
changes in the brain connectivity network driven by short-
term stimuli.

Step One: obtain a temporal average graph by learning the
precision matrix Y from D via graphical lasso (GLasso):

Y = arg min
Θ

− log(det(Θ)) + trace(SΘ) + λ‖Θ‖1

Here the λ is chosen so that sp(Y ) is equal to a fixed sparsity.
Define a binary regularization map M ∈ Rp×p with non-zero
element Mij = 1 if Yij is zero.
Step Two: obtain moving average graphs from subsets of the
data setD. First select k overlapping subsets {D(i)}i=1...k by
a sliding window of size w and step size d, where w is chosen
to be in the same time scale of the duration of the interested
stimulus. For each subset D(i), learn a precision matrix Y (i)

by solving a map-penalized GLasso (MP-GLasso) (problem
(2)) withM determined in step one and λ is chosen to achieve
a fixed sparsity sp(Y (i)). Compute nn(Y (i)), nz(Y (i)) and
zn(Y (i)) based on the temporal average precision matrix.
Step Three: obtain random average graphs from random sub-
sets of the data set D for a statistical test in step four. Ran-
domly select subsets from data {D(ri)}i=1...kr

with size equal
to the window size in step two. Repeat the computation in step
two on random subsets to get precision matrices {Y (ri)} and
corresponding {nn(Y (ri))}, {nz(Y (ri))} and {zn(Y (ri))}.
Step Four: detect the changes in the brain connectivity net-
work. First fit the Gaussian distribution by {nn(Y (ri))},
{nz(Y (ri))} and {zn(Y (ri))}. Second compute the p-value
of {nn(Y (i))}, {nz(Y (i))} and {zn(Y (i))} based on the
corresponding distributions. If the p-value is less than a
predefined significance level, then a change in the brain con-
nectivity is detected.

4. EXPERIMENT RESULTS

4.1. Sampling Complexity

We conducted experiments on synthetic data to show that
map-penalized graphical lasso (MP-GLasso) exhibits im-
proved performance over graphical lasso (GLasso) for data
with small sample size. We generated graphs with random
sparsity structure as in [17, 20]. Specifically, to generate an
inverse covariance matrix with random non-zero patterns, we
first generated a sparse square matrix U ∈ Rp×p by randomly
setting its non-zero elements as ±1. Then we set the true
precision matrix Θ∗ to be UTU and add an identity matrix
to ensure the positive definiteness of Θ∗. We controlled
the number of non-zeros in U so that the resulting Θ∗ has
approximately 10p non-zero elements.

We first tested GLasso. In Fig. 1(a) for a fixed regulariza-
tion parameter λ, the structure learned from a small sample
size such as 200 contains a large number of incorrect edges,
while the structure estimated by data with a larger sample size
recovers the true graph much better by reducing this num-
ber. In Fig. 1(b), we adaptively choose λ so that the resulting
sparsity of the estimated precision matrix is around ‖Θ∗‖0.

3508



Though we use the ground truth to limit the total number of
edges, data of sample size 200 still estimates more than 400
incorrect edges. The same trend also applies to the num-
ber of missing edges since nz(Y ) = ‖Θ∗‖0 − nn(Y ) =
‖Θ∗‖0 − (sp(Y ) − zn(Y )) ≈ zn(Y ), where Y is the learnt
structure. We then apply the MP-GLasso to the same data set
as shown in Fig. 1(c). Specifically, we first learn a temporal
average structure by estimating the precision matrix Y5000 us-
ing a random data set with 1000 samples. Then we use Y5000

to regularize the estimation of precision matrices for data with
fewer samples. Fig. 1(c) indicates that MP-GLasso increases
the number of correct edges as well as decreases the number
of wrong edges given the same λ. Intuitively, MP-GLasso im-
poses the estimated “mean connectivity” to improve learning
from data with a small sample size.
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Fig. 1. GLasso on synthetic data set with sample size varying from
200 to 5000: (a) shows metrics of the resulting precision matrices by
setting a fixed regularization parameter λ = 0.04; (b) shows met-
rics of the resulting precision matrices by adaptively choosing λ to
obtain the correct number of non-zero elements ‖Θ∗‖0. Compari-
son between graphical lasso (GLasso) and GLasso with map penalty
(MP-GLaaso): (c) from left to right – sparsity, the number of correct
edges, the number of missing edges and the number of wrong edges.
p = 100, ‖Θ∗‖0 = 902, α = λ. The sample size in (c) is 200, and
the penalty map is obtained from data consisting of 5000 random
samples with λ = 0.035.

4.2. Synthetic Dataset

To demonstrate the effectiveness of our method for detect-
ing connectivity changes, we generated a set of graphs simi-
lar to [6] in the following way: we set a reference precision
matrix Θ0 as 0.25Ip×p, where p = 100. To add an edge
(i, j) to the graph, we add σ to Θ0

ii and Θ0
jj , and subtract σ

from Θ0
ij and Θ0

ji to keep Θ positive definite. To delete an
edge, reverse the above steps with σ = Θ0

ij . We randomly
assign 200 edges for Θ0. Then generate a set of precision
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Fig. 2. Detecting stimulus-driven changes: comparison be-
tween (a) map-penalized graphical lasso (MP-GLasso) and
(b) graphical lasso (GLasso) on synthetic data. p = 100,
‖Θ(k)‖0 = 300 for k = 1, . . . , 10, block size = 200. The
block indicated in orange-red color is in state A, the rest of
blocks in dark orange color are in state B. Window size =
100, step size = 20, α = λ , significance level = 0.005. Itera-
tively choose the value of λ such that the sparsity for temporal
average graph = 300 and that for moving average graph = 200.

matrices {Θ(1), . . . ,Θ(K)} (K = 10), where each Θ(k) is
obtained based on Θ0 by adding n(k)

a new edges and deleting
n

(k)
d existing edges. We set n(k)

a = n
(k)
d to 90 for k = 5 and

n
(k)
a = n

(k)
d as 5 for the rest. Then we generate K blocks

of data. For each block, we draw 200 samples of data from
Gaussian distribution with the corresponding precision matrix
Θ(k). Since the graph for k = 5 deviates a lot more from the
reference precision matrix, we refer the 5th block as state A
and the rest as state B. We expect to detect the occurrence of
state A by checking the moving average precision matrix.

The dashed lines in Figure 2 indicate the number of new
edges with p-value equal to the significance level 0.005.
Graphs with p-value outside this region are identified as sig-
nificantly different from the temporal average graph. Figure
2(a) shows that our method correctly detected when the mov-
ing average graph deviates significantly from the temporal
average graph. Compared with the results of GLasso, by
imposing a map penalty, the mean and variance of the num-
ber of new edges obtained by MP-GLasso are both reduced
for moving graphs in state B and for random graphs. More
importantly, since the moving average graphs and the random
average graphs vary too much, the changing pattern of differ-
ent states suggested by GLasso in Figure 2(b) is also not as
clear as by MP-GLasso in Figure 2(a).

4.3. Hitchcock Movie Dataset

We tested our method on the fMRI dataset from [21]. 11 fe-
male subjects watched a 20-mins movie Bang! You’re Dead
directed by Alfred Hitchcock, while the whole brain volumes
(58/40/46 slices on Anteroposterior/ Dorsoventral/ Mediolat-
eral axes, respectively) were scanned every 2 seconds (TR =
2 sec). The total number of TR is 618 for each subject. The
movie contains several tense scenes, each lasting from tens of
seconds to several minutes. We preprocessed the data set as
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in [22] to extract 200*2 voxels from (left and right) ventral
temporal (VT) for each scan image. Then we use a matrix
D ∈ R200×618 to detect the connectivity changes in (left or
right) the brain connectivity for each subject.

Figure 3 shows the results for left and right hemispheres
of a single subject. Since the sets of voxels for two hemi-
spheres are selected separately, the similar trends of two red
curves suggests the existence of consistent across hemisphere
temporal brain connectivity changes. Window samples with
p-value less than the significance level 0.005 are also con-
firmed as deviation from the average state statistically. So for
this subject, the moving average connectivity deviates from
the temporal average connectivity both at the beginning and
the last third of the movie.
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Fig. 3. Detecting stimulus driven changes in the left and right
brain connectivity network: the number of new edges of mov-
ing average (red) or random average (green) brain connectiv-
ity network compared to the temporal average brain connec-
tivity network. The (blue) dashed lines indicate the number of
new edges with p-value equal to the significance level 0.005.
The length of the movie = 20mins, TR=2s. p = 200, window
size = 100, step size = 20, α = 0.4λ. Iteratively choose the
value of λ such that the sparsity for temporal average graph
= 1200 and the sparsity for moving average graph = 1200.

The estimated patterns of connectivity changes differ
across subjects. The counting of subjects with detected
changes over 11 female subjects is shown in Figure 4. We see
changes along the entire time line, with some consistency in
the temporal pattern of connectivity changes in the two hemi-
spheres as visualized by dashed lines in Figure 4 (a). And
the counts in the right hemisphere varies more frequently
than the left hemisphere, which may be due to the fact that
all subjects in this experiments are right-handed. To anaylze
how the connectivity changes relate to the stimulus – in this
case the movie, we defined two types of events and annotated
the movie by an event matrix E ∈ R11×60, where eij = 1
if event i happened in the 20 seconds non-overlapping movie
segments j, and zero otherwise. The type I contains 3 events
which mark transitions between two different scenes: 1) in-
door and outdoor, 2) different indoor backgrounds and 3)
people and objects. The type II contains the rest 8 seman-
tic events listed in Figure 4 (b). For the type II events, we
replaced each row vector in E with its first order difference
to capture the transition of events. To simulate the averaging
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Fig. 4. (a) The counting of subjects with detected stimulus
driven brain connectivity changes. Yellow and green dashed
curves are polynomial fitting (7 degree) of the histograms for
visualization. Two examples of event vectors: object close
shots marked by orange red blocks; people moving shots
marked by dark green.(b) The correlation coefficients with
positive values between the counting histogram in (a) with
the semantic vectors learned from the movie.

effect of window sampling, we applied a Gaussin filter with
σ = 2.5 (such that ±2σ corresponding to time interval 200
seconds = 100 TRs) to row vectors in E and calculate the
correlation between the histograms in Figure 4 (a) and the
resulting 11 smoothed vectors. Consistent results with rela-
tively large correlation in the two hemispheres, such as the
’people moving’, ’words’ and ’tense music’ events, may sug-
gest their relevance to the cause of connectivity changes. So
the subjects may pay more attention to the movie when actors
started or stopped moving. Since VT mainly processes visual
information, the reason that the ’tense music’ event has large
correlation can be possibly interpreted as: during the movie,
tense music was always played with the most exciting scenes
so that the music raises the visual attention of our subjects.
For the rest of the semantic events, since no consistent results
for two hemispheres are shown, it needs further investigation
of their relationship to connectivity changes.

5. CONCLUSION

In this paper, we considered the problem of detecting changes
in functional brain connectivity network driven by short-term
stimuli. We presented a new scheme called map-penalized
graphical lasso to address the issue of insufficient sample size
and to improve the performance of detection. Experiment re-
sults on synthetic data indicated improved performance over
graphical lasso. Experiment results on real fMRI data sug-
gested similar trends of changes in the left and right hemi-
spheres, and the detected changes in the right hemisphere var-
ied more frequently than the left hemisphere for right-handed
subjects. Our results suggest the difficulty of analyzing the
causality between the detected changes and the stimulus, so
a proper design for new experiments will consider stimulus
with simpler semantic meaning. We would like to test more
methods on the Hitchcock dataset in the future work. A future
direction we are pursuing is to explicitly analyze how the con-
nectivity network evolves with time as the stimulus changes.
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