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ABSTRACT

Non-rigid 3D shape recognition is an important and challenging re-
search topic in computer vision and pattern recognition. This paper
presents a novel algorithm, called dictionary learning based on su-
pervised locally linear representation (DL-SLLR), for efficient 3D
shape recognition using shape descriptors. Specifically, we intro-
duce a novel locality-preservation error term along with a label ap-
proximation error term into the objective function. The proposed al-
gorithm optimizes a dictionary for its capability in representation as
well as its locality-preservation capability, which thus allows more
consistent encoding of similar descriptors compared with sparse cod-
ing. In addition, the proposed SLLR coding yields a closed-form
solution, compared to many sparse coding algorithms. Experimen-
tal results demonstrate that using majority voting, DL-SLLR out-
performs D-KSVD and SVM over a newly generated SLI 3D Face
Dataset and the SHREC’11 Contest Dataset.

Index Terms— Shape recognition, Point cloud classification,
Dictionary learning, Classification, Sparse Coding

1. INTRODUCTION

Accurately recognizing non-rigid 3D objects in real world has been
a challenging topic in machine/computer-vision-based applications
such as robotic control, surveillance, automatic navigation, assis-
tive technology, etc [1]. To achieve this objective, effective feature
extraction strategies and discriminative classification algorithms are
much needed.

In order to extract robust features from 3D surface of non-
rigid objects, many algorithms have been proposed. Typically,
they can be categorized into global feature extraction, e.g., shape
histograms [2], shape moments [3], spherical harmonics [4], etc,
and local feature extraction, e.g., heat kernel signatures [5], mesh-
SIFT [6], 3D SURF [1], etc. Experiments have demonstrated that
the local feature based methods have obvious advantages for dealing
with issues of noise and partial occlusion [1, 7]. In this paper, we
employ meshSIFT [6] algorithm to build 3D shape descriptors.

Once the features of an object are extracted, an effective classifi-
cation algorithm is desired to identify the class of the object. Among
those proposed classification methods so far, we mainly investigate
dictionary learning based approaches. Sparse coding solves for a
compact and representational dictionary such that the large amount
of training data can be expressed linearly by a few atoms in the dic-
tionary. It has been proven that this model is effective in image
restoration [8,9], image denoising [10,11], image classification [12–
14], etc. In particular, Zhang et al. [14] proposed Discriminative-
KSVD (D-KSVD) for face recognition by introducing label informa-
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Fig. 1: The proposed classification strategy. Given a query shape S, extract shape
descriptors on it and then perform classification per descriptor. Finally the label of S is
determined by majority voting over descriptor decisions.

tion into an objective function such that a representational dictionary
and a linear classifier can be jointly optimized by using KSVD [10].
However, sparse coding based algorithms do not exploit the depen-
dency information among local features and may therefore yield in-
consistent representations of similar features [15, 16].

Locality-based coding was recently developed [17, 18] to ad-
dress this issue. Particularly, Yu et al. [17] introduced Locally Coor-
dinate Coding (LCC) to approximately express nonlinear functions
as a linear combination of anchor points. Unfortunately, their cod-
ing strategy is based on a modification of LASSO (Least Absolute
Shrinkage and Selection Operator) and hence suffers from high com-
putation cost. Wang et al. [18] further proposed Locality-constrained
Linear Coding (LLC) as a fast approximation to LCC achieving im-
pressive performance in image classification by using LLC codes as
features and Support Vector Machine (SVM) as classifier. Neverthe-
less, little efforts has been made to apply the aforementioned sparse
or local coding techniques to non-rigid 3D shape recognition.

In this paper, we propose a novel algorithm, called dictionary
learning based on supervised locally linear representation (DL-
SLLR) for efficient 3D shape recognition. The main contribution
is explicitly incorporating a locality-preservation error term and the
label approximation error term into the objective function. Unlike
sparse coding based algorithms [13, 14, 19–22], the proposed SLLR
coding yields a closed-form solution. Moreover, the dictionary is
optimized for both reconstruction and locality preservation, which
therefore allows not only faithful reconstruction but also more con-
sistent encoding of similar descriptors [15]. The proposed DL-SLLR
is also different from recently proposed locality-based coding algo-
rithms [17, 18, 23] in that 1) The SLLR coding is supervised such
that training descriptors can only be coded by its same-class neigh-
boring atoms, which thus yields a more discriminative dictionary; 2)
A simple yet effective linear mapping is explicitly formulated into
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the unified objective function for classification.
To classify a query shape, we aggregate the predicted results

of all descriptors using majority voting. Such a scheme requires
negligible computational complexity and is invariant to rigid (rota-
tion, scaling, and shift) and non-rigid (e.g., stretch, shrink and twist)
transformations. Experiments over a newly generated SLI 3D Face
Dataset and the SHREC’11 Contest Dataset validate the effective-
ness of the proposed framework, i.e., DL-SLLR in conjunction with
majority voting.

2. DICTIONARY LEARNING

Consider a C-label 3D shape classification problem. Let Yi ∈
Rm×ni be a set of m-dimensional ni shape descriptors extracted
from 3D objects with label i. Assign label i to all descriptors in Yi.
Set Y = [Y1,Y2, . . . ,YC ] ∈ Rm×N as the training set for all
classes, where N =

∑C
i=1 ni.

Let D = [D1,D2, . . . ,DC ] ∈ Rm×L be a structured dictio-
nary, where each Di ∈ Rm×K is a class-specific sub-dictionary
trained for Yi and L = KC. Denote xj ∈ RL as the sparse
code of yj over D, where yj ∈ Y is the j-th descriptor in Y, for
j = 1, . . . , N . We define Ωk(yj) as the same-class neighborhood
with respect to yj containing k-nearest-neighbor atoms from one
particular sub-dictionary, which is pertaining to the same label as
yj . Correspondingly, define Λdi , {yj | ∀j, xij ̸= 0, yj ∈ Y}
as a neighborhood of di, containing all yj that are concurrently se-
lecting di as one of their neighboring atoms, where xij is the i-th
element in vector xj .

The goal at hand is achieving two objectives. The first is estab-
lishing a discriminative dictionary structured as D = [D1,D2, . . . ,
DC ] such that each Di is independently trained for Yi and every
atom di preserves the locality of its neighborhood Λdi . The sec-
ond objective is realizing a linear mapping W ∈ RC×L that trans-
forms the sparse code xj of every descriptor yj to its label vector
hj = [0, . . . , 1, . . . , 0]T, where the index of element 1 indicates the
label of yj . Thus, the dictionary learning problem (DL-SLLR) is
formalized as:

min
D,W,X

 ∥Y −DX∥2F + α
K∑
i=1

∑
yj∈Λdi

∥yj − di∥22

+β ∥H−WX∥2F + γ ∥X∥2F + µ ∥W∥2F

 (1)

s.t. xij = 0 if di /∈ Ωk(yj) (∗)
1Txj = 1 ∀i, j (∗∗)

where X = [x1, . . . ,xN ] ∈ RL×N contains the SLLR codes (dis-
cussed in the next section) for descriptors in Y ∈ Rm×N , and xij

is the i-th element in column vector xj ∈ X. Obeying the standard
meaning, the first and the third terms represent the reconstruction
and the label approximation errors respectively. The second term is
the novel locality-preservation error term, which ensures that every
atom is close to those training samples that concurrently choose it as
one of their neighboring atoms. It therefore encourages atom consis-
tency in local representations of similar descriptors [15]. Note that
γ ∥X∥2F and µ ∥W∥2F are regularization penalty terms, included for
numerical stability, with γ and µ small positive constants. In addi-
tion, the constraint (∗) requires each descriptor to be reconstructed
only by its same-class neighboring atoms, ensuring that every sub-
dictionary Di is trained from the Yi independently. The constraint
(∗∗) allows the coding to be shift-invariant, in which 1 is a column
vector of all ones.

3. OPTIMIZATION

The dictionary learning problem can be solved by iteratively repeat-
ing the following two steps to reduce the objective function, i.e., first
solving for the code matrix X with the other two variables fixed, and
then updating D and W, respectively. The iterations are terminated
if either the objective function value is below some preset threshold
or a maximum number of iterations has been reached.

3.1. Supervised Locally Linear Representation (SLLR)

Consider first solving for the SLLR code xj ∈ X, for all j =

1, . . . , N , with D, W fixed. Define ŷj =
[
yT
j ,

√
βhT

j

]T ∈ Rm+C

as the j-th augmented training sample in the augmented training
set Ŷ =

[
YT,

√
βHT

]T ∈ R(m+C)×N . Likewise denote D̂ =[
DT,

√
βWT

]T ∈ R(m+C)×L as the augmented dictionary. Fur-
thermore, set Ω̂k(yj) = {d̂i| ∀i, di ∈ Ωk(yj), d̂i ∈ D̂} as the
augmented neighborhood with respect to yj , with d̂i being the i-th
column in D̂. Thus, minimizing Eq. (1) with respect to xj , is equiv-
alent to solving the following locally linear representation (LLR)
problem [24, 25] under the same-class neighborhood constraint.

min
xj

∥ŷj − D̂xj∥22 + γ ∥xj∥22 (2)

s.t. xij = 0 if d̂i /∈ Ω̂k(yj)

1Txj = 1 ∀i

Taking both of the constraints into consideration simultaneously, and
using Lagrange multiplier, we get

J (x̃j , η) = ∥ŷj − Ω̂kx̃j∥22 + γ ∥x̃j∥22 + η
(

1Tx̃j − 1
)

(3)

where for simplicity we express Ω̂k(yj) as Ω̂k ∈ R(m+C)×k, and
x̃j is a succinct vector containing only the nonzero coefficients for
those d̂i ∈ Ω̂k(yj). Denote as G = (Ω̂k − ŷj1T)T(Ω̂k − ŷj1T)
the local covariance matrix. Then Eq. (3) can be written as:

J (x̃j , η) = x̃T
j (G+ γI)x̃j + η

(
1Tx̃j − 1

)
(4)

where I is the identity matrix. Setting ∇x̃jJ (x̃j , η) and ∇ηJ (x̃j , η)
to zero yields the desired closed-form solution, as

x̃j =
(G+ γI)−11

1T(G+ γI)−11
(5)

As suggested by [24], a more efficient way to compute x̃j is by first
solving the linear system of equations (G + γI)x̃j = 1 and then
normalizing x̃j to satisfy the sum-to-one constraint. We adopt this
for practical implementation.

Note that the proposed SLLR is different from LLR [24, 25] in
that 1) SLLR coding is supervised, which yields discriminative local
reconstruction coefficients; 2) SLLR is performed over a compact
dictionary and is combined with dictionary optimization, which in
turn helps further reduce the reconstruction error.

3.2. Updating the Dictionary and the Mapping

Next, consider the update of D and W, with X fixed. We individu-
ally optimize each atom of D. Let di ∈ Rm be the i-th atom in D
and define xi∗ ∈ R1×N as the i-th row of X. With X and the other
atoms fixed, we rewrite Eq. (1) and cast the optimization problem
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with respect to di as

min
di

H(di) =

∥∥∥∥∥∥Y −
∑
l̸=i

dlxl∗ − dixi∗

∥∥∥∥∥∥
2

F

+ α

 ∑
yj∈Λdi

∥yj − di∥22 +
∑
l̸=i

∑
yj∈Λdl

∥yj − dl∥22


(6)

Letting E = Y −
∑
l ̸=i

dlxl∗ and rearranging Eq. (6), we have

min
di

H(di) = Tr
{
(E− dixi∗)(E− dixi∗)

T
}

+ α
∑

yj∈Λdi

[
(yj − di)

T(yj − di)
]

(7)

Note that H(di) is convex. Hence, setting the gradient of H(dj)
with respect to di to zero yields the updated atom dnew

i as

dnew
i =

1

(xi∗xT
i∗ + α|Λdi |)

ExT
i∗ + α

∑
yj∈Λdi

yj

 (8)

where |Λdi | denotes the cardinality of set Λdi . Applying Eq. (8)
to all di, for i = 1, . . . , L, completes the dictionary update in the
current iteration.

In order to update W, we solve the multivariate ridge regres-
sion [26] problem as

Wnew = argmin
W

∥H−WX∥2F + µ ∥W∥2F (9)

where µ is a small positive constant for numerical stability. The
solution is easily obtained as

Wnew = HXT(XXT + µI)−1 (10)

Minimizing the objective function, we will obtain the optimal dic-
tionary D, which is representational for reconstructing training de-
scriptors and capable of preserving locality of the data manifold, and
get the optimal mapping W in approximating the label matrix.

4. CLASSIFICATION

Human can distinguish different classes of objects (see Fig. 1) with
mutual similarity in shape, even without using the clue of size, color
and texture because we can make judgements based on seeking and
comparing the most distinctive shape characteristics among those
objects, despite the presence of a large portion of mutual similar-
ity [27]. In other words, it is the most distinctive shape features
of an object that plays the critical role in a successful recognition.
We propose to emulate this process by employing majority voting
and apply it to classifying 3D objects based on the newly proposed
dictionary learning algorithm. Simplistically, we may assume that
the votes from nondistinctive shape descriptors are approximately
evenly spread across similar classes. Thus the outcome is the class
that wins the most votes from the distinctive descriptors. Major-
ity voting is an aggregation process (in which we need no explicit
knowledge about which descriptors are distinctive or not) and its
result is determined by the highest accumulated votes on a particu-
lar class. Visualizing the vote distribution of two objects from the
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Fig. 2: Majority voting results after normalization on SHREC’11 Contest Dataset. The
two objects are bird (a) and hand (b). The bird is associated to label 4 while the hand is
associated to label 15. Since the number of extracted descriptors varies across different
objects, we normalize the voting results for better visualization.

SHREC’11 Contest Dataset [28], we can see in Fig. 2 that although
a large portion of votes go to incorrect classes, the true class clearly
receives the highest number of votes compared with any incorrect
class.

Given a query object S, denote QS = [q1, . . . ,qn] ∈ Rm×n

as the set of n extracted shape descriptors. The local reconstruction
code xj for each qj is computed by solving

min
xj

∥qj −Dxj∥22 + γ ∥xj∥22 (11)

s.t. xij = 0 if di /∈ Γt(qj) ∀i
1Txj = 1

where xij is the i-th element in vector xj ∈ RL and Γt(qj) is a
neighborhood set consisting of t nearest-neighbor atoms of qj . The
solution is given previously as Eq. (5).

Next, compute the projection r = Wxj ∈ RC and assign the
label lj to descriptor qj according to

lj = argmax
i

(r = [r1, . . . , ri, . . . , rC ]
T) (12)

Applying the same procedure to all qj ∈ Q, a label vector is formed
as l = [l1, l2, . . . , ln]. Finally, we count the votes for each class
label based on l and classify the query shape S according to the
label receiving the most votes.

5. EXPERIMENT

The proposed DL-SLLR algorithm is evaluated using majority vot-
ing as classification scheme over two large datasets, the SLI 3D Face
Dataset and the SHREC’11 Contest Dataset [28]1. The proposed
method is compared with D-KSVD [14] using majority voting and
with a baseline SVM [29] method with Gaussian kernel using bag-
of-words histogram (BoWH + SVM). The shape descriptors are ex-
tracted using meshSIFT [6]. Training parameters for DL-SLLR are
k ∈ {2, 3, 4, 5}, α = β = 0.01, γ = µ = 0.001 over both datasets.
The neighborhood size t for classification is set to 10 and 6 for the
face and the SHREC’11 datasets respectively.

5.1. SLI 3D Face Dataset

First presented are classification results over a newly generated
Structured Light Illumination 3D Face Dataset (SLI 3D Face
Dataset) [30]. This dataset is collected using the algorithm and
hardware implementation developed in [31, 32]. It contains 576

1Accessible at:http://www.itl.nist.gov/iad/vug/sharp/contest/2011/
NonRigid/data.html

3504



(a) Neutral (b) Sad (c) Happy (d) Anger

(e) Right 45◦ (f) Up-front 0◦ (g) Left 45◦

Fig. 3: Examples for SLI 3D Face Dataset. Top row are four expressions at angle 0◦;
Bottom row are manually cropped face area with normal expression under three view
angles.

Table 1: Recognition results on SLI 3D Face Dataset.
Method Proposed D-KSVD [14] BoWH + SVM [29] Smeet’s [6]

Accuracy 96.00% 95.78% 90.63% 91.67%

Table 2: Computation time for classifying one query object on SLI 3D Face Dataset.
Method Proposed D-KSVD [14]

Computation time 0.0776s 0.5068s

high-quality dense 3D point clouds (approximately 5000 points per
face) for 24 subjects with 4 static facial expressions under 3 different
view angles. The population of 24 volunteers consists of 7 females
and 17 males. Data for each individual is collected over two record-
ing sessions in a dark room. During each session, an individual is
required to face the camera at 3 different angles, i.e., ±45◦ (frontal
right/left) and 0◦ (up-front), while at each angle performing 4 kinds
of static facial expressions, i.e., neutral, sad, happy, and anger.

Preprocessing the point clouds for classification, we use the
depth information to segment subjects from the background (top
row of Fig. 3) and then manually crop the face area for each sub-
ject with a 3D bounding box (bottom row of Fig. 3). We employ
the same subset of the database as [30] for evaluation. The total
number of meshSIFT descriptors extracted from training faces is
approximately 70,000. For DL-SLLR and D-KSVD, a dictionary of
L = 4800 atoms is trained for classification, i.e., K = 200 atoms
per class. The results are reported based on 4-fold cross-validation
over a repetitions. As shown in Table 1, the proposed approach out-
performs other competitive methods yielding the highest recognition
rate of 96.00%. The proposed DL-SLLR is also compared with D-
KSVD [14] in terms of the average computation time for classifying
one 3D face. As shown in Table 2, DL-SLLR is approximately 6
time faster than D-KSVD.

5.2. SHREC’11 Contest Dataset

The SHREC’11 Contest Dataset [28] consists of 600 non-rigid 3D
objects from 30 classes represented as watertight triangle meshes, in-
cluding alien, horse, lamp, etc., as shown in Fig. 4 and Fig. 5. Each
class equally has 20 objects. The total number of shape descriptors
extracted from training objects is approximately 380,000. For DL-
SLLR and D-KSVD, a classification dictionary of L = 6000 atoms
is trained, i.e., K = 200 atoms per class. We conduct 10-fold cross-
validation over the entire dataset and report averaged recognition re-
sults over 20 repetitions. As shown in Table 5, the proposed DL-
SLLR with majority voting achieves the highest recognition rate of
99.67%. In addition, DL-SLLR is compared with D-KSVD [14] in
terms of the average computation time for classifying one query ob-
ject. As shown in Table 4, the proposed algorithm is approximately
5 times faster than D-KSVD. Finally, we study the robustness of
aforementioned methods against to partial occlusions. Fig. 6 shows
the performance of the methods under the conditions of varying per-

Fig. 4: 30 classes from SHREC’11 Contest Dataset. Image cited from SHREC’11 Con-
test website.

Fig. 5: 3D Nonrigid shapes from object class horse.
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Fig. 6: Performance comparison on robustness against partial occlusion.

Table 3: Recognition results on SHREC’11 Contest Dataset.
Method Proposed D-KSVD [14] BoWH + SVM [29] Smeet’s [28]

Accuracy 99.67% 96.67% 98.00% 90.00%

Table 4: Computation time for classifying one query object on SHREC’11 Contest
Dataset.

Method Proposed D-KSVD [14]
Computation time 0.0122s 0.0697s

centage of occlusion. Clearly, the proposed approach (DL-SLLR in
conjunction with majority) outperforms other methods.

6. CONCLUSION AND FUTURE WORK
We present a novel dictionary learning algorithm (DL-SLLR) for 3D
shape recognition. The main contribution is integrating the locality-
preservation error term and the label approximation error term into
the objective function for discriminative dictionary learning. The
dictionary is learned in such a way as to be simultaneously repre-
sentational and locality-preserving. Moreover, the proposed SLLR
coding yields a closed-form solution. Experimental results show
that the proposed DL-SLLR in conjunction with majority voting,
achieves impressive classification performance over two large-scale
3D datasets and outperforms state-of-the-art methods, i.e., D-KSVD
and SVM. Future work includes 1) the refinement of coding strat-
egy by combining nearest neighbor search with sparse coding; 2)
more systematic evaluation of the proposed method using other
shape descriptors and over more standard datasets; 3) benchmarking
our newly generated SLI 3D Face Dataset and contribute it to the
research community.
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