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ABSTRACT

Co-training is a practical and powerful semi-supervised learn-
ing method. It yields high classification accuracy with a
training data set containing only a small set of labeled data.
Successful performance in co-training requires two impor-
tant conditions on the features: diversity and sufficiency.
In this paper, we propose a novel mutual information (MI)
based approach inspired by the idea of dependent component
analysis (DCA) to achieve feature splits that are maximally
independent between-subsets (diversity) or within-subsets
(sufficiency). We evaluate the relationship between the clas-
sification performance and the relative importance of the two
conditions. Experimental results on actual tire data indicate
that compared to diversity, sufficiency has a more significant
impact on their classification accuracy. Further results show
that co-training with feature splits obtained by the MI-based
approach yields higher accuracy than supervised classifica-
tion and significantly higher when using a small set of labeled
training data.

Index Terms— Co-training, semi-supervised classifica-
tion, feature splits, DCA, LTM tire data

1. INTRODUCTION
Semi-supervised learning has recently attracted much atten-
tion in the machine learning field. It is designed to achieve
high classification accuracy with reduced effort from experi-
enced human annotators, since only a small size of labeled
training data is required.

Among several semi-supervised learning methods [1–3],
co-training, as a data-driven method, provides a practical and
powerful approach for real-world problems. Co-training is
based on the training of two classifiers, each using a sub-
set of the features. First, both classifiers are trained on the
available labeled data. Then, the unlabeled data samples with
the most confident predictions in one classifier are cross-fed
to the other classifier as newly labeled samples on which the
training stages can re-iterate. Success in co-training is guar-
anteed under two important conditions [4]:
Diversity: Features can be split into two sets that are condi-

tionally independent given the class;
Sufficiency: Each subset of features attributed to a single

classifier is sufficient to train a good classifier.
Generally, we could achieve high classification accuracy
when one of the aforementioned conditions is met while the
other is only weakly satisfied [5, 6]. However, in many cases,
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Fig. 1. (a) Three tires with varying degrees of IW patterns.
(b) Sample mean sections of different tire types along with
the definition of the terminology. A section of a tire is a set
of samples across ribs for each scanning point. Each tire type
can be characterized by the positions of its grooves and ribs.

it is difficult to find sufficiently powerful features that natu-
rally split into two sets. Hence, features are often split into
subsets based on heuristic criteria [7–9]. To the best of our
knowledge, this is the first time feature splits are obtained
based on either the diversity or the sufficiency condition for
co-training, allowing to investigate their respective influence
on the performance.

We propose a novel mutual information (MI) based ap-
proach inspired by the idea of dependent component analysis
(DCA) [10, 11] to successfully address the problem of fea-
ture split selection. The MI-based method automatically con-
structs hierarchical clusters and achieves feature splits with
maximal between- or within- classifier independence that sat-
isfies diversity or sufficiency. Experimental results on laser
tread mapping (LTM) tire data indicate that among the two
conditions, sufficiency has a more significant impact on the
classification accuracy than diversity. Further results show
that co-training with feature splits obtained by the MI-based
approach yields significantly higher classification accuracy
than supervised learning when only few labeled training data
are available.

2. DATA AND PREPROCESSING
2.1. Data set
We analyze LTM data obtained from 22 tires at specific
mileages in their service life. Laser mapping is used to mea-
sure the progress of the tread wear. To obtain the LTM data,
a single point conical laser is used to scan the surface of the
tire at 1mm lateral spacing and 4140 points per single wheel
revolution (360 degrees) and measures the distance to the tire
surface along the normal to the tread surface. Tires with irreg-
ular wear (IW)—i.e., non-uniform or uneven wear patterns,
resulting in locally depressed regions—should be labeled as
a bad tire. Example tire images exhibiting IW are shown in
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Fig. 2. The preprocessing steps for the LTM data: (a) The mean section of a tire, mean values of 4140 scanning points along the
circumference, and the image of the raw data; (b) the mean section after the rib detection step where we keep as many points
as possible on the sides of each rib to preserve IW; (c) five second-order polynomials in red and several sections from the tire
on left, the image of the tire data after detrending in the middle and the same sections on right; (d) the image and sections of
the tire data after the outlier elimination step; (e) images of the whole tire on top and the small samples after segmentation on
bottom; and (f) the small samples on right and the corresponding classification samples after the data smoothing step on left.
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Fig. 3. The figure shows how we cut a tire into small samples:
(a) Images of the same tire for specific mileages; (b) one patch
from that tire measured in the earliest mileage; (c) one rib
from the patch; and (d) the two halves of a rib.

Figure 1 (a). Our goal is to predict the label (IW or non-IW)
of tires based on data acquired at the lowest available mileage
under the hypothesis that IW can be expressed as a function
of the tread depth measurements.

2.2. Data preprocessing
We implement five preprocessing steps. We pay special at-
tention not to introduce any bias to the subsequent analy-
sis stages, thus preserving the information as much as pos-
sible. The preprocessing steps are shown in Figure 2, which
are rib detection, polynomial detrending, outlier elimination,
segmentation, and data smoothing. (1) Rib detection: We
are interested in studying the IW as it manifests itself on the
ribs. Each tire has different positions of grooves and ribs as
shown in Figure 1 (b). We retain samples on ribs and dis-
card samples corresponding to grooves. For further analysis,
we also combine sacrificial ribs with their neighboring ribs
to be able to analyze the former for possible IW. (2) Polyno-
mial detrending: For each rib, we select points within two
times the standard deviation (std) of samples and compute
the regression polynomials for the mean section. We use a
second-order polynomial as the trend of a given tire rib to
avoid matching points in grooves and IW. We then subtract
the trends from each section of the given tire data and ob-
tain flattened tire data. (3) Outlier elimination: We detect and
remove outliers from the flattened data. After we locate sev-
eral ribs in the first step, there still exist outliers belonging to
grooves. Those typical outliers on the edges of a rib are elimi-
nated by a Grubbs test [12]. (4) Segmentation: To obtain more

homogeneous samples, we are interested in classifying small
units of tires as shown in Figure 3 (d). Thus, we cut each tire
into patches according to the general contact length between
a tire and the road, then each patch into several ribs and each
rib into two halves. (5) Data smoothing: We smooth sample
images by 2D median filtering. Since IW is expected to be
smooth and to have a reasonably large area, we apply 2D me-
dian filtering using a window size of 7-by-7 to reduce noise
and preserve edges of IW. The classification samples obtained
from the 4th step are normalized to have zero mean and unit
variance. Thus, IW—usually observed as a depression of the
tire—now is associated mainly with negative values.

3. FEATURE EXTRACTION
The aim of the classification task is to detect samples with IW
patterns. For each sample, we extract and select 14 relevant
features to distinguish between the two groups. Some of our
features are straightforward, such as the minimum and mean
of negative values for a given sample, and the Euclidean dis-
tance from the test sample to the mean of good training sam-
ples. Other features are defined as follows.
3.1. KPCA-LDA
Kernel principal component analysis (KPCA) maps the in-
put data into a higher dimension space, called the feature
space, by using a non-linear mapping and then applies linear
PCA in this feature space [13]. First, for the training matrix
X = [x1, . . . , xn]T , we define an n-by-n matrix K with entries
k(xi, x j), where i, j = 1, . . . , n and k(xi, x j) is the kernel repre-
sentation. In this paper, we use a Gaussian kernel. Second, we
obtain the m largest positive eigenvalues and the correspond-
ing normalized eigenvectors through the eigen-decomposition
of the kernel matrix K. The dimension m is selected au-
tomatically according to the gap in the eigen spectrum in-
stead of using a fixed number [14]. Third, the KPCA trans-
formed feature is calculated by y =

∑n
i=1 βik(xi, x), where

βi = [βi1, βi2, . . . , βim]T and βim is the i-th entry of the m-th
largest eigenvector.

Linear discriminant analysis (LDA) aims to achieve an
optimal linear dimensionality reduction [15, 16]. According
to Fisher’s criterion J(w) = wT SBw(wT SWw)−1, where SB
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Fig. 4. Estimated probability distributions of good and bad
samples by kernel density estimate. The x-axis represents 100
points covering the range of the data and y-axis shows the
corresponding density values.

is the between-class covariance matrix and SW is the total
within-class covariance matrix, we can find a linear combi-
nation w of features that provides a balance between maxi-
mum class compactness and class separability by maximiz-
ing J(w), where w is the generalized eigenvector of (SW ,SB)
corresponding to the largest generalized eigenvalue. Then the
KPCA-LDA feature is obtained by f = wT y, where y is the
output of KPCA.
3.2. KL divergence and global statistics
The Kullback-Leibler (KL) divergence is a non-symmetric
measure of the information-theoretic distance between two
probability distributions [17, 18]. For probability mass func-
tions p and q of a discrete random variable, their KL diver-
gence is defined as DKL(p ‖ q) =

∑
i p(i)log p(i)

q(i) which is non-
negative and DKL(p ‖ q) = 0 if and only if p = q.

From visual inspection, good and bad samples have sig-
nificant differences between their probability distributions as
shown in Figure 4. Hence, we calculate KL divergence be-
tween histograms of the test sample and the selected good/bad
sample in the training set as a feature. The selected sample is
the center of a subset consisting of training samples in the
40th-60th percentile of their skewness values, which are rep-
resentative for each class.

In addition, we calculate several other statistical measures
of the LTM data as features, including std (σ), skewness and
kurtosis. Thus, we obtain two features based on KL diver-
gence and three features based on statistics of the LTM data.
3.3. DCT coefficients
A discrete cosine transform (DCT) expresses a sequence of
finitely many data points in terms of a sum of cosine functions
oscillating at different frequencies [19]. It is defined as

y(k) = $(k)
N∑

n=1

x(n)cos
(
π(2n − 1)(k − 1)

2N

)
, k = 1, 2, . . . ,N

where $(k) = 1/
√

N, if k = 1, otherwise
√

2/
√

N and N
is the length of input vector x. DCT, as a simple and efficient
frequency domain analysis method, can be used to capture the
IW patterns present in high frequencies for the bad sample
shown in Figure 5 (b). Thus, we calculate the mean and std of
DCT coefficients (1st to 100th that contain enough discrimi-
native power) to define another feature used for classification.

3.4. Magnitude of the 2D gradient
An image gradient is a directional change in the intensity or
color in an image [20]. The coordinates of the gradient are
given by the formula ∇g = [∂g/∂x, ∂g/∂y]T , where x repre-
sents the horizontal direction and y is the vertical direction.

Good Bad

(a)

(c)

(b)

Fig. 5. Comparison of a good and a bad sample using three
methods: (a) images of the good/bad sample after preprocess-
ing steps; (b) 1st to 100th DCT coefficients; (c) images of 2D
gradient magnitude.

Since IW corresponds to a local depression of the tire sur-
face, we expect 2D gradient magnitude to be higher for IW
samples, see Figure 5 (c). Additionally, the std, mean and
maximum value of 2D gradient magnitude are calculated as
features to be used in classification.

4. CO-TRAINING
4.1. Co-training algorithm
The goal of co-training is to learn a classification mapping
from the training set including labeled and unlabeled data.
Each classifier is initialized using only the typically few avail-
able labeled examples. At every iteration of co-training, each
classifier chooses a set of unlabeled examples to add to the
training set. The selected set includes those with the high-
est classification confidence provided by the other classifier.
Then, each classifier learns from their augmented labeled set,
and the process repeats. The intuition behind the co-training
algorithm is that one classifier adds examples to the labeled
set that the other classifier will then be able to use success-
fully for learning [21].

We implement several classifiers to perform co-training,
including Naive Bayes (NB), probabilistic multilayer percep-
tron (MLP) [22, 23] and a support vector machine (SVM)
classifier. If we apply NB and MLP in co-training, the confi-
dent examples are computed based on the posterior probabil-
ities which are the classifier outputs. The probability of a test
example belonging to one class is obtained as the product of
the outputs of two classifiers. If we apply SVM, the confident
examples are selected based on the distance to the decision
boundary and a test example belongs to the group predicted
by the classifier producing higher confidence.

4.2. Feature splits based on MI
Co-training requires constructing and splitting two sets of fea-
tures from original data to perform successful classification.
However, it is not easy to construct feature sets that satisfy
both diversity and sufficiency. Hence, we propose an MI-
based approach inspired by the idea of DCA for the task.

DCA model relaxes the independence assumption by de-
composing the data into independent subsets where within
each subset, the components are dependent. A practical and
effective way to obtain DCA decomposition is by first per-
forming independent component analysis (ICA) [24, 25] and
then grouping the independent components into clusters by
using MI as the metric between components [26,27]. We pro-
pose to use the grouping part of DCA to split features by max-
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Fig. 6. Two feature splits obtained by the MI-based approach.
The x-axis represents indices of features with the order of de-
scription in Section 3. Features shown as the same color are
grouped in one classifier in co-training.

Fig. 7. Comparison between co-training and supervised learn-
ing. For both, we use NB classifier.

imization of the MI between two sub-feature sets denoted as
I({ fi, i ∈ S }, { f j, j ∈ {1, 2, . . . , F} − S }), where F is the total
number of features, involving several stages:

1. Select and extract feature fi[k] = fi(xk) from each of
labeled LTM samples xk, 1 ≤ k ≤ L;

2. Calculate I( fi, f j), i, j = 1, . . . , F (normalized through
√

1 − e−2I( fi, f j) ∈ [0, 1));
3. Construct F × F MI matrices M[g] and M[b] using L1

good and L2 bad labeled samples, respectively;
4. Calculate the MI matrix given class information, de-

fined as M = (M[g] × L1 + M[b] × L2)/L;
5. Generate dendrograms using hierarchical clustering

based on the distance measure 1 − M and M, respec-
tively, where 1 is the F×F matrix with all entries equal
to 1.

After applying this MI-based approach, we perform clas-
sification using the co-training algorithm with the feature
splits, we thus obtain.

5. EXPERIMENTAL RESULTS
Labels for LTM samples are assigned by an expert. Then we
select 270 samples for which we have confidence in their la-
bels including 47 bad and 223 good half-ribs from a total of
1320 samples. For each experiment, we take the average of
100 runs as the final classification accuracy and report the std.
In the co-training procedure, we select labeled training and
test data randomly from 270 samples and allow others to be
unlabeled data for each run. Also, we keep the same propor-
tion (1/5) of bad/good samples in the training set of each run
to make sure co-training yields consistent results.

5.1. Evaluation of feature splits
We obtain two feature splits that satisfy two conditions of co-
training from the MI-based method. To investigate the sig-
nificance of these two splits for co-training, we randomly se-
lect 11 features from 14 features to construct feature splits
and perform co-training with NB classifier using 36 labeled
training data. For each split, we require that each classifier
has at least three features. Then we analyze the experimental

Table 1. Results of two splits in co-training(%)
NB SVM MLPLinear RBF (σ = 2.5) Poly (2)

Split 1 97.7 ± 2.1 97.7 ± 2.0 98.5 ± 1.9 96.2 ± 2.9 98.2 ± 1.7
Split 2 98.4 ± 2.0 97.8 ± 2.4 98.1 ± 1.8 97.1 ± 2.5 98.4 ± 1.5

Table 2. Evaluation of two feature splits
Between-class Within-class Split 1 − Split 2

t-values 2.6 −42.8 −1.1
p-values 0.06 0.18 × 10−5 0.28

results of 364 feature combinations, each combination con-
taining two splits. The results include MI between-classifier,
the average MI within-classifier and classification accuracy.
In the analysis, we perform (1) a paired t-test between clas-
sification accuracy of two splits (Split 1 represents the split
based on 1 −M; Split 2 represents the split based on M), and
(2) a permutation test on multiple regression coefficients. The
multiple regression is defined as m = an1 +bn2, where m rep-
resents a random subset of obtained classification accuracy,
n1 and n2 denote the corresponding subsets of between- and
within- classifier MI, and a and b are the coefficients. We also
perform co-training on two splits of 14 features using several
classifiers, including NB, MLP and SVM with different ker-
nels, and give the comparison in Figure 6 and Table 1.

The results in Table 2 show that within-class MI has
significantly negative correlation with the classification accu-
racy. In other words, the more powerful the retained features
within a classifier, the higher is the obtained classification
accuracy. The between-class independence is also impor-
tant since the t-value of between-class MI is not significant
and it is very small compared to the result of within-class.
Even though the classification rates yielded by Split 2 are not
significantly higher than the results of Split 1, our results in-
dicate that sufficiency is more important than diversity. Thus,
in the following analysis, we apply Split 2 in co-training to
evaluate the classification performance.

5.2. Performance of co-training
One of the advantages of co-training is that even a few labeled
training data may lead to high classification accuracy. We thus
evaluate the performance of co-training with increasing num-
ber of initially available labeled training data and compare the
results with supervised learning as shown in Figure 7. The re-
sults indicate that co-training has great power using a few la-
beled training samples compared to supervised learning with
the NB classifier.

6. CONCLUSION
In this work, we propose a novel MI-based approach to split
features for co-training. These features are extracted from
LTM data using several feature extraction methods. We in-
troduce an efficient method to perform co-training when fea-
tures are not naturally separated into two subsets. In earlier
studies, few methods of feature splits have been proposed for
co-training [7–9]. In these methods, best splits are evaluated
or selected among a huge amount of random feature splits ac-
cording to their criteria. Additionally, our experimental result
indicates that sufficiency has a more significant contribution
to classification accuracy compared to diversity, which clari-
fies the dependence of co-training performance on two condi-
tions diversity and sufficiency.
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