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ABSTRACT

Fast detection and analysis of dangerous substances from
longer distances is highly desired in many security applica-
tions. Imaging Raman spectroscopy is a novel multi-spectral
imaging technique designed for stand-off screening and de-
tection of explosive substances. In this paper we present
a method for detection and classification of explosive sub-
stances in multi-spectral image sequences from imaging
Raman spectroscopy using linear subspace matching. Our
approach uses limited spectral information and is computa-
tionally efficient, which enables fast screening of interesting
areas. The performance of the method is evaluated on real
stand-off measurements from a demonstrator system. We
show that the method can detect and classify substances with
high accuracy.

Index Terms— Explosives, detection, Raman spec-
troscopy, multi-spectral imaging

1. INTRODUCTION AND RELATED WORK

There is a need to detect explosives, e.g., improvised ex-
plosive devices, in real environments at stand-off distances.
The time to detect a deployed explosive device is often lim-
ited. However, detection of trace particles from production
of the explosives can extend the available time to detect
the threat before deployment. Detection of small amounts
of particles on a surface among other unknown substances
at stand-off distance is a challenging problem, but laser-
based spectroscopy techniques, e.g., Raman spectroscopy,
has shown promising results [1, 2].

Raman spectroscopy is a commonly used laser-based
technique to analyze substances. A laser spot illuminates
the target area and part of the scattered laser light is shifted
in wavelength depending on the vibrational modes of the
molecules in the target substance [3]. The shifted light is col-
lected by a lens and passed to a spectrometer which records
a densely sampled spectrum. The spectrum has peaks at the
wavelengths of the returning shifted light which depends on
the substance. This spectrum of the Raman scattered light
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Fig. 1. Example stand-off Raman spectra for Sulfur (S), Am-
monium Nitrate (AN), TNT, and DNT. The spectra are verti-
cally offset for visibility and the Raman peaks used for detec-
tion and classification are marked.

provides a signature which can be used to classify the target
substance.

Imaging Raman is a novel sensor technique based on
Raman spectroscopy. It is designed to detect explosive sub-
stances at stand-off distance and meet the need to detect
small particles [4, 5]. In contrast to conventional Raman
spectroscopy [3, 6], which measure a single full spectrum
from an area where spectra from object and background are
mixed, an imaging Raman system uses a high resolution gated
intensified charge-coupled device (ICCD) camera to resolve
the target area and a tunable liquid-crystal filter to select the
wavelength to image in each frame. The high-resolution im-
age of the target area enables detection of small amounts of
substance, such as trace particles, since the Raman scatter-
ing from any background substances is reduced in the pixels
which contain the target substance. A multi-spectral image
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sequence acquired by imaging Raman has two spatial and
one spectral dimension. The spectral dimension is imaged
sequentially and the ICCD is exposed to the light from one
wavelength at the time. Due to the limited imaging time in
real situations, the spectral dimension needs to be sparsely
sampled. Therefore, all methods for detection and classifica-
tion of substances must limit the required spectral information
to enable real-time analysis. Figure 1 shows example spectra
from imaging Raman which are densely sampled.

In the literature, only a few methods have been proposed
for the analysis of data from imaging Raman. In [4], two
methods are applied for detection of explosives. The first
method calculates the sample correlation coefficient for the
spectrum in each pixel and a reference spectrum for each sub-
stance. This approach only takes shape into account and not
absolute signal level, which makes the method sensitive to
both the signal level and noise in the background. The corre-
lation image for each substance can be thresholded to obtain a
classification result. The second method is a linear regression
of each measured spectrum, using reference spectra from all
substances and a constant spectrum as regressors. The con-
stant spectrum is used as a model of the background. The
classification is given by the substance with the largest re-
gression coefficient. This method is sensitive to the scaling
of the reference spectra and to the length of the spectra for
substances with only few peaks.

In this paper we present a novel approach for detection
and classification of explosive substances in multi-spectral
image sequences from imaging Raman spectroscopy using
linear subspace matching. Similar techniques for spectral
matching have been used in medical imaging and hyper spec-
tral imaging applications [7, 8, 9]. The proposed method
is evaluated on real image data from imaging Raman spec-
troscopy.

The paper is structured as follows. The method is pre-
sented in Section 2, experiments and results on real data are
presented in the evaluation in Section 3, and the paper is con-
cluded in Section 4 with a discussion and conclusions.

2. METHOD

Two features are extracted from the Raman spectrum in each
pixel: the peak to noise ratio (Section 2.1) and a shape fea-
ture based on spectral matching using linear regression (Sec-
tion 2.2). The features are used for detection (Section 2.3) and
classification (Section 2.4) of measured spectra. The detector
and classifier are trained using images with marked areas for
the respective classes.

2.1. Peak to noise ratio

The peak to noise ratio (PNR) is defined as the maximum of
the measured spectrum divided by the mean noise level in the
image (calculated as the mean value for a region in the back-

ground). The noise level can be calculated beforehand using
the same imaging parameters and the peak value is then easily
calculated for each measured spectrum during the imaging.

2.2. Shape matching

A spectral subspace model is constructed for each substance
using training data from imaging Raman obtained at the peak
locations in the respective spectral signatures. The peak loca-
tions can be obtained from, e.g., reference spectra measured
with high spectral resolution using conventional Raman.

For each substance i, a matrix Bi is constructed, with the
training spectra in columns. The mean is subtracted from each
spectrum and the matrix is decomposed using Singular Value
Decomposition (SVD) [10]

Bi = UiΣiVi. (1)

The first n vectors of Ui are used as the subspace model Xi.
Two vectors are often enough to describe typical shape varia-
tions of each substance. Note the difference to the regression
in [4], where one linear model is used for all substances.

The training of the subspace models is very simple, which
makes it fast. This is useful if new substances must be added.
The peak locations for all substances can be used in all models
if there are few substances. If many substances are used, the
spectral support for each model can be reduced to reduce the
influence from background noise and the influence from other
unknown substances.

To obtain the shape feature, the sparse spectrum in each
spatial position of the measured multi-spectral image is
matched to all models using linear subspace matching. The
measured spectrum in a pixel, y, is modeled as

y = Xiβi + εi (2)

using each spectral subspace model Xi. The components
of the coefficient vector βi are identified using regular least
squares and the fit of the measured spectrum to the model is
measured using the score si

si =
||Xiβi||2

||y||2
, (3)

which is the shape feature for each substance.

2.3. Detection

Detection of a substance is based on the PNR and the corre-
sponding shape feature for the substance. An example of the
PNR and the shape feature values for four substances (sul-
fur, ammonium nitrate, TNT, and DNT) are shown in Fig-
ure 2. In the detection, the PNR value is thresholded at a level
corresponding to 99.9% correctly classified background pix-
els in training data. A detection map is calculated for each
substance based on the corresponding shape feature in all de-
tected pixels.
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Fig. 2. An example of the PNR and shape feature values for
the four substances and background (BG) in dataset D2.

2.4. Classification

Classification of the substances is computed per pixel in the
image by finding the class with the maximum shape score
above a threshold in the pixel using the detection maps for all
classes.

Spatial smoothing of the result can be applied after the
classification step if small particles are not of interest. The
method for detection and classification is computationally ef-
ficient since it only needs to solve one least squares problem
per model for all spectra in the image and calculate simple
scores and find maximal values. All calculations can be ap-
plied per pixel.

3. EVALUATION

The accuracy of the method is evaluated using real datasets
with ground truth. The method is also evaluated on images
from a scenario with three small pieces of substance imaged
through a car window from approximately 10 meters distance.

Measurements from a demonstrator system in a lab en-
vironment are used to evaluate the method. The demon-
strator system has a gated ICCD camera with a sensor of
1024 × 1024 pixels. At 10 meters distance the imaged

Table 1. Confusion matrix for the classification of dataset
D1 and D2 using five classes: background (BG) and the four
modeled substances S, AN, TNT, and DNT.

D1 Predicted label
BG S AN TNT DNT

Tr
ue

la
be

l BG 2742 1 0 1 0
S 0 1196 0 0 0

AN 0 0 1331 0 0
TNT 0 1 0 1456 4
DNT 0 0 0 0 1219

D2 Predicted label
BG S AN TNT DNT

Tr
ue

la
be

l BG 6120 19 4 0 1
S 0 7636 0 0 0

AN 21 0 8602 0 13
TNT 4 10 0 7674 244
DNT 12 0 0 44 8279

surface area is 25 × 25 mm. Two datasets for accuracy eval-
uation were collected at approximately 10 meters stand-off.
Samples from sulfur (S), ammonium nitrate (AN), 2,4,6-
trinitrotouluene (TNT), and 2,4-dinitrotoluene (DNT) were
used.

In the first dataset, D1, four multi-spectral image se-
quences, one for each substance, were imaged. The samples
are round discs of about 10 mm in diameter which are placed
in holes in an aluminum plate. In the second dataset, D2, six
image sequences of different test plates were imaged with all
substances in each multi-spectral image. The samples were
placed in holes with a diameter of 2 mm in an aluminum
plate. This dataset has much smaller pieces of the substances
and it was imaged four months after the first. All images were
collected at different times with the instrument, which also
incorporate some variation in the system calibration parame-
ters. Ground truth to evaluate the accuracy of the presented
method was obtained by manually marking and labeling the
interior of each substance in the images. Each spectral im-
age used in the experiments for training and evaluation was
median filtered using a small kernel to reduce influence from
spurious noise. It is assumed that the area of a substance
particle in the image is larger than the kernel size.

Measurements from the strongest peaks were selected for
each substance to construct the models. In total ten peaks
were selected for the models, see Figure 1. All peak locations
were used to model all substances. If only one substance is of
interest, a few measurements in the background must also be
added for reference. The subspace models were constructed
using a training set from dataset D1.

First the accuracy of the detection and classification
method is evaluated on the marked evaluation set from D1.
The evaluation set consists of 7951 measured spectra from
the five classes, the four substances and the background. The
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Fig. 3. Detection maps of substances on the steering wheel
of a car. In each image the shape feature is shown for all
the detected pixels for the respective substances. The corre-
sponding classification using the shape threshold 0.7 is shown
in Figure 4 (bottom right).

overall classification accuracy is 99.91%. However, even
if the training and evaluation data are different the datasets
are very similar. Table 1 shows the corresponding confusion
matrix. The shape threshold is 0.5 in the experiments.

To investigate the variability, the model which was con-
structed using dataset D1 is also used to classify the sub-
stances in dataset D2. This evaluation set consists of 38683
measured spectra from the five classes. The overall classifica-
tion accuracy for all plates is 99.01% and Table 1 shows the
corresponding confusion matrix. Some mixing of DNT and
TNT is introduced, as can be expected, since they have simi-
lar molecular structure and share some of the Raman peaks.

Figure 3 and 4 show an example of detection and clas-
sification from a more realistic outdoor scenario where three
substances, sulfur, ammonium nitrate, and DNT, have been
placed on the steering wheel of a car and imaged at stand-off
distance of about 10 meters through the side window of the
car. Figure 3 shows the detection maps for all modeled sub-
stances. Figure 4 shows images of the experiment setup and
the corresponding classification result. The subspace mod-
els trained on dataset D1 was used with the shape threshold
0.7. In addition, only eight wavenumbers were used (since
823 and 1347 cm−1 were not available). All three substances
are detected, but ammonium nitrate is more difficult to detect
since the signal is only slightly higher than the noise level.
In general, the signal to noise ratio (SNR) can be increased
using longer integration time which will further improve the
classification result, but increase the required imaging time.

Fig. 4. Stand-off detection and classification of substances
placed on the steering wheel of a car. The classified sub-
stances are sulfur (blue), ammonium nitrate (light blue), and
DNT (green).

4. DISCUSSION AND CONCLUSION

We have presented a novel approach to detection and classi-
fication of explosive substances in multi-spectral image se-
quences from imaging Raman using linear subspace match-
ing. The method is computationally efficient since it uses
only limited spectral information. This also makes the im-
age acquisition faster and enables the sensor to move to the
next target area faster. We have shown that the method can be
used to recognize substances in new unseen images with an
overall classification accuracy of 99.01%. Only a few images
collected at the wavelengths of the strongest peaks from each
substance are needed to efficiently detect and classify all sub-
stances. We have also shown that the method provides good
classification performance in real scenarios. Both the training
and classification using the linear subspace method are simple
and new classes can be added easily.

The method can be varied for different use cases. Depend-
ing on the required imaging situation, e.g., stand-off distance
or available scan time, different scanning approaches can be
used. For example a few representative peaks can be used for
each substance in a first screening. Then, if a small group of
pixels is detected with high accuracy as a known explosive or
another substance of interest the area can be scanned again
using additional peaks and a longer integration time.

In future work we intend to further investigate the sensi-
tivity to noise and the needed variability using larger datasets
with several substances. An investigation of the detection lim-
its for different substances and the required imaging time is
also of interest.
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