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ABSTRACT

Error correcting output code (ECOC) is a general framework
of solving a multiclass classification problem via a binary-
class classifier ensemble. In this paper, we propose a new
heuristic coding method, named weight optimization and lay-
ered clustering-based ECOC (WOLC-ECOC). It iterates the
following two steps until the training risk converges. The
first step employs the layered clustering-based approach [1].
The approach can construct multiple different strong binary-
class classifiers on a given binary-class problem, so that the
heuristic training process will not be blocked by some dif-
ficult binary-class problems. The second step is the weight
optimization technique [2]. It guarantees the non-increasing
of the heuristic training process whenever we add new classi-
fiers to the ECOC ensemble. Experimental results on several
benchmark sets demonstrate that WOLC-ECOC is more ef-
fective than 15 referenced coding-decoding ECOC pairs.

Index Terms— Classifier ensemble, error correcting out-
put codes, multiple classifier systems, multiclass classifica-
tion problem.

1. INTRODUCTION

Over the last decades, classifier ensembles (i.e. multiple clas-
sifier systems), such as bagging, boosting, and their varia-
tions, have been proven to be effective approaches for solving
learning problems like classification, regression, etc. For such
tasks, the success of the classifier ensembles relies strongly
on a good selection of the base learners and a strong diver-
sity among the base learners. One of the well-known classi-
fier ensembles for solving multiclass problems is the error-
correcting output code (ECOC) [3]. ECOC decomposes a
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Fig. 1. Example of an ECOC code matrix M [4].

multiclass problem to a serial binary-class problems. Each
binary-class problem is solved by some binary-class classi-
fier, such as AdaBoost and support vector machine. Given a
P class problem with a set of labeled samples {(p;,v:)}"
where p; is a d dimensional sample, and y; € {1,2,..., P}
is the label of p,, the ECOC tries to use () binary-class classi-
fiers to address this problem. The relation between the classes
and the classifiers can be expressed by a code matrix Ml €
{~1,0,1}7*@Q. An example of M is shown in Fig. 1 with
P=4and Q =T7[4].

ECOC consists of two phases — coding and decoding. In
the coding process, ECOC tries to find a code matrix M for
the classifier training, where the p-th row of M expresses the
codeword of the p-th class, denoted as c,, and the g-th col-
umn expresses the g-th classifiers, denoted as hq. If the entry
myp,q = 0, it means that h, does not take the data of the p-
th class into classifier training [5]. In the decoding process,
taking a test sample p into hy, ..., hg successively can get a
test codeword of p, denoted as x = [x1,...,20]7. Given a
decoding strategy f(x, c,), the prediction of p can be formu-
lated as a minimization problem minc, e f(x%,cp), Where
M= {cp}f;):1 is the codeword set.

For the coding phase, there are generally two research
directions for the codeword design. The first direction is
the problem-independent coding design, such as the well-
known one-versus-all (1vsALL) and one-versus-one (1vsl).
The second direction is the problem-dependent coding de-
sign, which seems more promising and has attracted much
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attention. In [6], Pujol ef al. proposed a problem-dependent
coding method called discriminative ECOC (DECOC) . It
embeds a binary decision tree to the coding design, where
each node of the tree is a powerful bipartition of a multiclass
problem. However, the decision tree has an intrinsic defect
that if a test pattern is predicted wrongly by a father node,
it will have no chance to be corrected by the child node. To
overcome this drawback, in [7], Pujol et al. further proposed
the ECOC optimizing node embedding (ECOC-ONE) algo-
rithm. It starts with an initial ECOC classifier ensemble and
iteratively adds the binary-class classifier that discriminates
the most confusing pair of the classes to the ECOC ensemble
until the desired performance is reached. This approach re-
pairs the intrinsic defect of the decision tree and improves the
performance directly by discriminating the most confusing
pair. However, sometimes, the most confusing pair of the
classes are so “stubborn” that we cannot even find a strong
binary-class classifier on the pair. For this problem, in [§],
Escalera et al. proposed to split the most confusing pair
of the classes into several subclasses, such that a difficult
learning problem can be decomposed to several easier sub-
problems. The subclass-ECOC method puts on a new scene
to the ECOC study — microstructure analysis. However, the
subclass-ECOC still uses a binary decision tree to construct
the subclasses. Moreover, it has to control the scale of the
subclasses, which might not be an easy job. Here comes the
question, can we utilize the subclass technique for the most
confusing pair without employing a tree structure?

For the decoding phase, recently, in [4], Escalera et al. in-
troduced a weight matrix to the loss based (LB) decoding [5],
which is known as the loss weighted (LW) decoding and has
shown to be more powerful than traditional decoding meth-
ods. In [2], Zhang et al. further proposed the optimized
weighted (OW) decoding. It tries to find a weight matrix that
results in the minimal training risk.

In this paper, we propose a novel weight optimization
and layered clustering-based ECOC (WOLC-ECOC). Specif-
ically, we first employ a novel layered clustering-based (LC)
approach to overcome the tree structure when we utilize the
subclass technique. Then, we propose a wrapping-based
ECOC that iterates the LC approach and the OW decoding.
WOLC-ECOC makes the training risk degrade with iterations
until the risk converges. Experimental results on several UCI
datasets show that the new method is strongly competitive.

2. RELATED WORK

2.1. Optimized Weighted Decoding:

In [4], Escalera et al. presented that a good decoding strat-
egy should make each class have the same decoding dynamic
range and zero decoding dynamic range bias. Then, they pro-
posed the LW decoding algorithm. The LW decoding intro-
duces a predefined weight matrix W = [w?,..., w57 =
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We denote the set of all feasible weight matrices that are
constrained by (1) as W (W &€ W). The prediction function
of the LW decoding algorithm is given by

Q
cfnel;\l/t fow(x,¢p) = c?lelj\l/l ; wp,g(TqCp.q) @
where £(-) is a user defined loss function. In this paper, we
consider the linear loss function £(§) = —6. However, in [4],
the authors did not mention how to get the optimal W. They
only take an empirical assignment according to the training
accuracy of each dichotomizer.

To overcome the empirical assignment of the weight ma-
trix, in [2], Zhang et al. proposed to optimize the weight ma-
trix theoretically for the minimal training risk. The weight
optimization is formulated as the following convex linear pro-
gramming problem

n P
C
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where u, = [{(z1¢p1), ..., l(zgcpq)]T, wis an unknown
parameter, {&; }; , are called slack variables, C is a user de-
fined constant, and (i, ;) is defined as

5(17%) = {

1, otherwise.

Problem (3) can be solved efficiently in time O(nlogn).

2.2. Layered Clustering-Based Approach:

The layered clustering-based (LC) approach [1] is a special
classifier ensemble. It first splits the feature space into sev-
eral different subspaces by clustering, where the classifica-
tion problem in each subspace is further solved by a classi-
fier. Then it repeats the above procedure several times. Each
independent repeat is called a layer. The LC approach con-
tains two complementary techniques. One is the clustering in
each layer. It can identify overlapping patterns that are hard
to differentiate. But it does not include any mechanism to in-
corporate the diversity (see the first paragraph of Section 1).



The other one is the layered approach. It uses the mechanism
of the bagging and boosting to achieve the diversity between
any layers for the weakness of the first property. The layered
structure, as analyzed in [9], will improve the discriminability
of a classifier ensemble on a binary-class problem.

3. THE PROPOSED ECOC

3.1. Layered Clustering-Based ECOC:

As analyzed in the introduction section, in [8], Escalera et al.
proposed the subclass technique that splits a difficult classi-
fication problem to several easier sub-problems. Each sub-
problem is solved by an independent classifier. Finally, the
difficult problem is solved by a classifier ensemble. However,
they used a tree structure for the splitting. In order to inherit
the advantage of the subclass technique, and meanwhile, to
avoid using the decision tree for the subclass splitting, we in-
vestigate the ensemble learning for the solution as follows:

The key idea of the ensemble learning is to construct a
strong diversity among the base classifiers. Generally, the
methods of constructing the diversity can be grouped into four
types [9]. They are the methods of 1) manipulating the train-
ing examples, 2) manipulating the input features, 3) manipu-
lating the training parameters, and 4) manipulating the output
targets. However, aside from manipulating the outputs of the
binary classifiers which is the key idea of ECOC, the diver-
sity has been seldom referred in the ECOC study yet. To our
knowledge, only in [10], Prior and Windeatt manipulated dif-
ferent parameter settings of the base classifiers (multi-layer
perceptrons).

In this paper, we propose the LC [1] based ECOC (LC-
ECOC) for the aforementioned problem. LC-ECOC is pre-
sented as follows.

a) Take ECOC-ONE [7] as the base method. ECOC-ONE
iteratively adds binary-class classifiers that discriminate the
most confusing pairs of classes to the ECOC ensemble.

b) Whenever a “stubborn” pair is encountered, construct
one layer classifier ensemble by LC for the pair, and continue
the ECOC-ONE training. The “stubborn” pair means that the
most confusing pair in the current iteration has been tried be-
fore by some classifier of the ECOC ensemble, but because
the classifier is not strong enough, we encounter the problem
again.

LC-ECOC has two advantages. First, unlike ECOC-ONE
[7], the optimization process will not be blocked when a stub-
born pair is encountered. Second, unlike the subclass-ECOC
[8], if the subclass technique is utilized for the stubborn pair,
the decision tree based subclass splitting can be prevented.

3.2. WOLC-ECOC:

However, the optimization process of LC-ECOC does not
converge. Specifically, because adding a new classifier to the
LC-ECOC does not guarantee the decrease of the training
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Algorithm 1 WOLC-ECOC.
Initialization: Any initial ECOC ensemble, constant Z that
controls the convergence behavior.
1: repeat
2:  Run the OW decoding algorithm to find the optimal
weight matrix of the current ECOC ensemble
Find the most confusing pair of classes
if the pair is not “stubborn” then
Train a simple classifier as ECOC-ONE [7]
else
Train one layer of classifier ensemble as LC
end if
9:  Add the new classifier to the ECOC ensemble
10: until the training risk does not decrease for continuous Z
iterations

A A

risk, we do not know when to stop adding new classifiers
to the ensemble. Therefore, an empirical termination crite-
rion has to be utilized by LC-ECOC (and also its previous
ECOC-ONE).

Here, we propose a new algorithm, called WOLC-ECOC,
by fusing the OW decoding and LC-ECOC coding methods.
A simple description of the algorithm is presented in Algo-
rithm 1. Step 2 of Algorithm 1 is rather important for the ef-
fectiveness of adding new classifiers and for the convergence
behavior of WOLC-ECOC. It guarantees the non-increase
of the training risk whenever we add any new classifiers to
the ECOC ensemble. Therefore, if the training risk does not
decrease in several iterations, the training procedure can be
stopped. Note that if we delete Step 2 of Algorithm 1, the
algorithm becomes LC-ECOC.

4. EXPERIMENTS

The data used for experiments consists of 8 multiclass
datasets from the UCI Machine Learning Repository database.
The properties of the UCI datasets are listed in Table 1.

Table 1. Descriptions of the UCI datasets. “n” is the dataset
size, “d” is the dimension, “P” is the number of the classes.

ID | Data n d | P || ID | Data n d | P
1 Ecoli 336 | 7 | 8 || 5 Yeast 1484 | 8 | 10
2 | Thyroild | 215| 5 | 3 || 6 | Segmentation | 2310 | 19 | 7
3 Vowel 990 | 10 | 11 | 7 OptDigts 5620 | 64 | 10
4 Balance | 625 | 4 | 3 || 8 Vhicle 846 | 18 | 4

WOLC-ECOC is initialized by the 1vsALL coding, and
the constant Z is set to 3. Discrete AdaBoost is used as the
base classifier.

To show the effectiveness of the proposed method, we
compare it with 5 state-of-the-art ECOC coding designs, in-
cluding 1vsl, 1vsALL, Random [5], ECOC-ONE [7], and



Table 2. Accuracy comparison (%) of different ECOC coding-decoding methods on the UCI datasets. In each grid, the second

line denotes the corresponding decoding method of the accuracy.

ID | Data lvsl IvsALL Random ECOC-ONE DECOC WOLC-ECOC

I Ecoli 85.004+0.00 (2) | 81.2740.00 (3) | 77.52+1.36 (6) | 80.17+1.18 (4) | 78.47+2.37 (5) || 87.40+0.82 (1)
HD HD LW HD LW ow

2 Thyroid 93.45+0.00 (6) | 93.954+0.00 (3) | 94.574+0.92 (2) | 93.95+0.00 (3) | 93.934+0.72 (5) || 95.45+0.00 (1)
HD HD HD HD LW ow

3 Vowel 58.7440.00 (2) | 45.97+0.00 (4) | 40.99£1.95 (6) | 46.50+1.49 (4) | 45.80+£1.99 (5) || 60.61+0.82 (1)
HD LW LW LW LB ow

4 Balance 86.561+0.00 (4) | 87.67+0.00 (2) | 87.55+1.53 (3) | 77.814+0.00 (5) | 76.7040.00 (6) || 88.97+0.40 (1)
LW LW LW LW HD ow

s Yeast 53.99+0.00 (3) | 54.06+0.00 (2) | 45.50+1.51 (6) | 50.53+0.81 (4) | 50.53+0.99 (4) || 56.28+0.18 (1)
Lw Lw LW LW LW ow

6 Segmentation 95.31£0.00 (2) | 93.060.00 (5) | 92.43+1.18 (6) | 94.20+0.00 (3) | 93.374+0.00 (4) || 95.60+0.39 (1)
Lw LW LW LW HD ow

. OptDigts 95.28+0.00 (2) | 84.09+0.00 (4) | 74.69+0.69 (6) | 86.03+£0.00 (3) | 75.2740.00 (5) || 95.67+0.13 (1)
LW LW LW LW HD ow

g Vehicle 73.52+0.00 (3) | 72.3340.00 (6) | 73.07+0.94 (4) | 72.35+0.32 (5) | 74.284+1.04 (2) || 75.41+0.13 (1)
Lw Lw LW LW LW ow

Table 3. Code length comparison of different ECOC methods

on the UCI datasets.
ID | Data lvsl | 1vsALL | Random | ECOC-ONE | DECOC | WOLC-ECOC
1 Ecoli 28 8 10 9.48+0.13 7 14.75+2.01
2 | Thyroid 3 3 10 6.63+0.00 2 3.00-£0.00
3 Vowel 55 11 10 12.10+0.11 10 26.64+0.58
4 Balance 3 3 10 8.00+0.00 2 15.16+1.96
5 | Yeast 45 10 10 12.73+0.29 9 13.30+0.63
6 Segmen. 21 7 10 8.2540.00 6 13.18+2.05
7 | OptDigts | 45 10 10 11.0040.00 9 22.454+5.62
8 Vehicle 6 4 10 5424043 2 10.96+0.68
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Fig. 2. Convergence behavior of WOLC-ECOC on the Ve-
hicle dataset. (a) Convergence behavior of the training risk
(objective value). (b) Curves of the training and test accura-
cies.

DECOC [6]. Each of the competitive coding methods com-
bines with 3 decoding methods, including Hamming distance
(HD) decoding, LB decoding [5], and LW decoding [4].
Therefore, we totally compare WOLC-ECOC with 15 differ-
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ent coding-decoding method pairs. We run each pair of the
coding-decoding methods 10 times and record the average
experimental results. For each time, we apply a stratified
sampling and ten-fold cross-validation, and test for confi-
dence interval at 95 with a two-tailed 7 test.

Tables 2 and 3 list the accuracy and code length compar-
isons. From Table 2, it’s clear that the proposed algorithm is
more effective than 15 referenced methods. From Table 3, we
can see that although the code length of the proposed method
is longer than 1vsALL, DECOC, and ECOC-ONE, it is much
shorter than 1vs1. Generally, it’s worth of using a little longer
code length for a much higher accuracy.

Fig. 2 gives an example of the convergence behavior of
the training risk of WOLC-ECOC. From Fig. 2 (a), we can
see that the training risk decreases with respect to the iteration
numbers. Note that, from Fig. 2 (b), we can observe that the
accuracy is not always improved. This is because that the
training risk we optimize here is not rigourously equivalent to
the accuracy. Anyhow, we can still see that the accuracy is
generally improved.

5. CONCLUSIONS

In this paper, we have presented a new ECOC method, called
WOLC-ECOC. It iterates two novel parts until the training
risk converges. The first part is the LC approach. It inher-
its the advantage of the subclass splitting technique for the
“stubborn” problem without utilizing the decision tree for the
subclass splitting. The second part is the OW decoding. it
guarantees the decreasing of the training risk with respect to
the iterations. Finally, the experimental results on the UCI
datasets have shown that the WOLC-ECOC algorithm is more
effective than 15 referenced coding-decoding pairs.
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