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ABSTRACT

In this paper, we consider low-dimensional and sparse repre-
sentation models for human actions, that are consistent with
how actions evolve in high-dimensional feature spaces. We
first show that human actions can be well approximated by
piecewise linear structures in the feature space. Based on this,
we propose a new dictionary model that considers each atom
in the dictionary to be an affine subspace defined by a point
and a corresponding line. When compared to centered clus-
tering approaches such as K-means, we show that the pro-
posed dictionary is a better generative model for human ac-
tions. Furthermore, we demonstrate the utility of this model
in efficient representation and recognition of human activities
that are not available in the training set.

Index Terms— Dictionary learning, Sparse representa-
tions, Activity analysis.

1. INTRODUCTION

Sparse coding attempts to represent data vectors using a lin-
ear combination of a small number of vectors chosen from a
‘dictionary’. The dictionary that leads to an optimal sparse
representation can be either predefined or learned from the
training samples themselves. It is now well known that the
latter can lead to improved representation and recognition re-
sults [1, 2]. If the data is truly low-dimensional, sparse cod-
ing can effectively identify its low degrees of freedom, and
hence sparse models have proved successful in several inverse
problems in signal/image processing [1], and computer vision
[3]. When compared to classical subspace methods which
are efficient only if the data lies in a single low-dimensional
subspace, sparse coding can recover data lying in a union of
low-dimensional subspaces and hence provide a greater flex-
ibility in representation. Traditionally, most sparse coding
applications deal with static data such as images, but there
have been recent attempts to extend these concepts to videos
[4, 5]. To this end, problems of activity analysis have gained
lot of attention where typically a dictionary is learned either
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Fig. 1: Here we show the feature evolution of Running, Talk on
Phone and Waving. The features are projected to a lower dimen-
sional space for visualization. The top figure shows the three actions
on a common coordinate frame. It is seen that these structures can
be well approximated by piece-wise linear models.

per class of actions or on the entire set of all actions and
sparse codes are generated per frame. Most human actions
evolve over time where they usually begin with a rest pose
and end in an extreme pose. This transition is smooth result-
ing in smoothly varying features. The geometric structure of
these transitions is not known in general, but attempts have
been made to model this structure, e.g. actions have been
considered to trace out non-linear manifolds in feature spaces
[6]. While such models are quite rich and general, they are
accompanied by difficulties in learning the model and coding
data using the model. However, as shown in fig 1, a simple
piecewise linear model is sufficient to represent most com-
mon activities such as Waving, Running and Talking on the
phone. In addition to the representational simplicity, this also
affords solving the sparse-coding problem efficiently.

In such cases, centered clustering approaches such as K-
Means will not be able to effectively model the underlying
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patterns which will result in a loss in performance. To clus-
ter data that lies along hyperlines, He et al. [7] proposed the
K-hyperline clustering algorithm, which is an iterative proce-
dure that performs a least squares fit of K one dimensional
linear subspaces to the training data. The relation between
K-hyperline clustering and dictionary learning has been ex-
plored in [8]. Taking into consideration that cluster centers
computed by this algorithm are constrained to pass through
the origin, we propose a new heterogeneous dictionary model
in this paper. The elementary features in this dictionary corre-
spond to the 1D affine subspaces that represent human activ-
ities and hence the dictionary is interpretable. The proposed
dictionary is learned with features that are extracted per frame
from the videos in an action dataset.

Although several dictionary learning approaches are
known, only a few have been proposed that consider the
geometric structure along which activities evolve. Most of
the methods involve improving an initial dictionary, obtained
using methods such as K-SVD [1], by maximizing infor-
mation between dictionary atoms [5], learning class specific
dictionaries [4] etc. The idea of features lying along lines has
been used before - Taheri et al. [9] modeled facial expressions
as deviations along geodesics, which are generalizations of
high dimensional lines to non Euclidean spaces, from a “neu-
tral expression”, and Troje [10] showed that using simple
PCA one can identify important directions in landmark data,
that are later used for applications like gender classification.

In this paper, we present a dictionary model for human
activities by considering piecewise linear models of activities.
Each dictionary atom consists of a tuple - a point and a direc-
tion in space. We also introduce new constraints to the tra-
ditional sparse coding problem, and adapt it to the heteroge-
neous dictionary. We show that this can be an effective gener-
ative model for human actions. Furthermore, we demonstrate
that using such a dictionary, one can achieve state-of-the-art
recognition results, and maintain very low reconstruction er-
rors for unseen test activities.

2. PROPOSED DICTIONARY MODEL
In this section, we will formulate our dictionary learning
problem and present a method to generate sparse codes using
the proposed dictionary.

2.1. Learning the Dictionary

When a dictionary is constructed using K-hyperline cluster-
ing, each atom corresponds to a linear subspace. In this pa-
per, we generalize this dictionary to be a collection of affine
subspaces, where each atom is described by a point and an
associated direction in space. To learn such a dictionary, we
propose a 1D affine subspace clustering algorithm. In this
method, we incorporate an additional step of calculating the
sample mean µj of the jth cluster along with the least-squares
fit of a 1D subspace, dj , in K-hyperline clustering. The algo-

Input
Features {x1, · · · ,xT } and size of dictionary, K.

Output
Affine subspaces {H1, · · · ,HK} represented using the
means {µ1, · · · ,µK} and the directions {d1, · · · ,dK}.
Membership classes, C1, · · · , CK .

Algorithm
Initialize: {µ1, · · · ,µK} and {d1, · · · ,dK}.

while convergence not reached
Compute memberships:
- For each sample xi compute the projection of xi onto
each Hj , denoted by PHj(xi).
- k = argminj ||xi − PHj(xi)||Kj=1 and Ck = Ck ∪ {i}.

Update Hj : For each cluster j, compute {µj ,dj} as the
sample mean and the first principal component of all
samples indexed by Cj , respectively.

end

Table 1: The dictionary learning algorithm.

rithm is described in Table 1. To identify the cluster member-
ship, we project a data sample onto each dictionary atom and
choose the one that results in the least representation error.
The projection is performed as

PH(x) = µ+ β̂d, where β̂ = min
β
‖x−µ−βd‖22. (1)

Note that in this case, the least squares solution for β is
dT (x− µ).

2.2. Sparse Coding

Let us assume that a test sample in Rn can be represented as a
linear combination of a small number of affine subspaces. As-
suming that the set of dictionary atoms given by {µj ,dj}Kj=1

is known, the generative model for a test sample x can be
written as

x =
∑
j∈S

αjµj + βjdj . (2)

where S is the set of atoms that participate in the representa-
tion of x.

The solution to (2) can be obtained using convex program-
ming. The key consideration is that for a given j, µj and dj
must be chosen together. Furthermore, it is also useful to en-
sure that the new mean is in the convex hull of the means of
S. This can be posed and solved as group Lasso [11],

argmin
α,β

‖x− (Mα+Dβ)‖22 + λ

K∑
i=1

∥∥∥∥[ αi
βi

]∥∥∥∥
2

s.t. αi ≥ 0,
∑
i

αi = 1,

(3)

where M = [µj ]
K
j=1 and D = [dj ]

K
j=1.
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Fig. 2: Actions generated by sampling along the learned lines on the UMD actions data set [12]. Some generated actions such as wave, talk
on phone, kick appear to be laterally inverted as our representation is affine invariant.

3. EXPERIMENTAL VALIDATION

In this section, we demonstrate the use of the dictionary
model in representation and recognition of human actions.
First, we perform an experiment to validate the proposed
generative model, in comparison to a centered clustering
approach. Following this, we show that this dictionary can
generalize well in representing unseen human actions. Fi-
nally, we demonstrate that by aggregating the sparse codes in
multiple temporal scales, we can achieve the state-of-the-art
performance in activity recognition.

Generative Model for Human Actions: In this exper-
iment we show that the proposed dictionary can be used to
parameterize human actions, thereby demonstrating that the
model is an intuitive choice. We perform this experiment us-
ing a shape feature due to its obvious advantage in visual-
ization. We use the UMD Actions Dataset [12], as its back-
ground is relatively static and allows us to do easy background
subtraction. Having extracted the foreground, we perform
morphological operations and extract the contour of the hu-
man. We sampled a fixed number of points on the contour
to obtain the set of landmarks describing the shape. To rep-
resent these landmarks, we used an affine invariant represen-
tation where the set of m landmark points are given by the
m × 2 matrix L = [(x1, y1), (x2, y2), . . . , (xm, ym)] for the
centered shape. However, shape features do not lie in the Eu-
clidean space [13] and one must take into account the non-
linearity of the space while dealing with them. Since in this
paper we are dealing with the vector space, we will use em-
bedding approaches as they are conceptually simpler and eas-
ier to implement. These allow us to work with these complex
features while staying in a Euclidean space. With each set of
landmarks, we generate an m × m projection matrix that is
P = UUT , where L = USV T is the rank-2 SVD. Let Pv
be the vectorized form of P , we use Pv as a feature to learn
our dictionary. To recover the shape from this vector we re-
obtain the projection matrix P and perform a rank-2 SVD on

it. Now the feature corresponding to a shape at time t is gen-
erated as Pv(t) = µj + β(t)dj, parameterized by β(t) which
determines to what extent one must travel from µj along the
direction dj. We used different values of β for each action in
the range −1 < β(t) < 1. In fig 2, we show the generated
silhouette in each action and compare it to the ground truth.

Reconstruction of Unseen Actions: In this experiment,
we test the efficiency of the proposed dictionary in modeling
unseen actions from test data. Since every action is modeled
as a combination of means and directions, an unseen action
will typically have a mean that is different from any of the
previously learned actions. Hence, we model the new mean
as a linear combination of means and find its principal direc-
tion as a combination of the known directions. For our ex-
periments, we obtained activities from the Weizmann activity
dataset [14] which consists of 90 videos of 10 different ac-
tions, each performed by 9 different persons. The classes of
actions include running, jumping, walking, side walking etc.
In order to evaluate the performance of the proposed sparse
coding model, we used the features of all subjects from 6
different activities in the Weizmann dataset for obtaining the
dictionary and evaluated the reconstruction error for features
from the other 4 activities. The set of unseen testing activities
included jack, pjump, skip and wave1. For all our experi-
ments on this dataset we used the histogram of oriented op-
tical flow (HOOF) feature that was introduced in [15]. This
feature bins optical flow vectors based on their directions and
their primary angle with the horizontal axis, weighted by their
magnitudes. Using magnitudes alone is susceptible to noise
and can be very sensitive to scale. Thus all optical flow vec-
tors, v = [x, y]T with direction θ = tan−1( yx ) in the range
-π2 + π b−1B ≤ θ < −π2 + π b

B will contribute by
√
x2 + y2 to

the sum in bin b, where 1 ≤ b ≤ B, typically B = 30 is used.
Finally, the histogram is normalized to sum up to 1.

Using the training activities, we computed K (fixed at
20, 30 and 40) clusters to identify the principal directions and
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Method
No. of clusters

K=20 K=30 K=40

K-means - µ 0.3295 0.3069 0.2985
K-Hyperline d 0.2657 0.2485 0.2399

(µ,d)
0.1171 0.1039 0.0956

Dictionary

Table 2: Comparison of reconstruction error obtained using the pro-
posed sparse coding with K-means and K-hyperline clustering algo-
rithms. This demonstrates that by using a linear combination of a
few known atoms, we can model even unknown actions effectively.
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Fig. 3: Effect of sparsity on reconstruction error.

Proposed dictionary 98.88
K-means dictionary 84.44
Guha et al., Multiple Dictionaries [4] 98.9
Guha et al., Single Dictionary [4] 96.67
Chaudry et al. [15] 95.66

Table 3: Recognition performance (%) using the sparse codes gen-
erated with our model matched the best results on the Weizmann
dataset, outperforming several other techniques. As a baseline, the
recognition on sparse codes obtained using a K-means dictionary is
also shown.

their cluster centroids. For the test activities, we performed
sparse coding of the features using the computed centers and
directions as the dictionary atoms. Table 2 compares the av-
erage reconstruction error obtained for features from the test
activities using different coding schemes. Since more than
one atom can be used for representation, the reconstruction
error in our model is significantly lower than those obtained
with K-means or K-hyperline clustering. The plot in Fig 3
shows the reconstruction error obtained by varying the spar-
sity parameter λ.

Recognition of Human Activities: In this experiment,
we propose a method for performing recognition of human
activities from the Weizmann dataset using sparse codes ob-
tained from the features of each activity. Of the 9 subjects that
performed the activities, we used 6 subjects from each class
for training and the rest for testing. Hence, we used a total of
60 activities for learning the dictionary and training the classi-

fier. Using the features described in the previous experiment,
the sparse codes are computed by setting λ = 0.1. We aggre-
gate the sparse codes of the training features, in multiple tem-
poral scales, to create one overall feature vector per activity.
Given a set of sparse codes stacked in a matrix, aggregation
is performed by finding the value corresponding to the abso-
lute maximum of elements in each row. Since aggregation
destroys temporal information, we divide each activity into
1, 2, 4, and 6 temporal segments, and perform aggregation
independently in each, in order to partially preserve the tem-
poral information. Hence, if each sparse code is of length K,
we will obtain a overall feature vector of length 13K. These
overall feature vectors are used to train an SVM classifier. For
a test activity, the overall feature vector is computed similarly
and classification is performed.

In order to improve the reliability of recognition results,
we repeat the experiment 3 times with randomly chosen train-
ing and test sets. Table 3 compares our average performance
to other methods reported in the literature. It can be seen that
our method compares well with Guha et al., where we are
able to match their performance with just a single dictionary
as compared to learning a dictionary per class.

4. CONCLUSION AND FUTURE WORK

The proposed model opens up several interesting avenues of
research, we outline a few of them and conclude our work in
this section.

We introduced a sparse representational model for human
actions. We first showed that in feature spaces, common ac-
tions are approximately piecewise linear. Using this idea, we
proposed a dictionary model where each atom is a 1D affine
subspace described by a mean and an associated direction in
feature space. We show that the sparse codes generated using
this dictionary perform well in applications of recognition and
reconstruction of human actions. Such a model also allows us
to represent unseen actions accurately.
Extensions to non linear spaces: Features belonging to non
linear spaces such as manifolds have become increasingly
popular in the image processing and computer vision commu-
nities recently. An interesting extension to the proposed work
could be to learn the proposed dictionary model on manifolds.
Incorporating the non-linearity of the ambient space will lead
to a model robust enough to work with these new features.
Compression of actions: With rising popularity of robots
and intelligent surveillance systems, low bandwidth transmis-
sion for activities or events could prove to be extremely im-
portant. Using the proposed parametric form, extremely high
compression ratios could be achieved since only the parame-
ter(s) need to be transmitted as compared to several high di-
mensional features per action video.
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